
HDL Coder™
Reference

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Reference
© COPYRIGHT 2013–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2013 Online only New for Version 3.2 (R2013a)
September 2013 Online only Revised for Version 3.3 (R2013b)
March 2014 Online only Revised for Version 3.4 (Release 2014a)
October 2014 Online only Revised for Version 3.5 (Release 2014b)
March 2015 Online only Revised for Version 3.6 (Release 2015a)
September 2015 Online only Revised for Version 3.7 (Release 2015b)
October 2015 Online only Rereleased for Version 3.6.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.8 (Release 2016a)
September 2016 Online only Revised for Version 3.9 (Release 2016b)
March 2017 Online only Revised for Version 3.10 (Release 2017a)
September 2017 Online only Revised for Version 3.11 (Release 2017b)
March 2018 Online only Revised for Version 3.12 (Release 2018a)
September 2018 Online only Revised for Version 3.13 (Release 2018b)

v

Contents

Apps — Alphabetical List
1

Functions — Alphabetical List
2

Supported Blocks
3

Properties — Alphabetical List
4

Class reference for HDL code generation from
Simulink

5

Function Reference for HDL Code Generation from
MATLAB

6

Class Reference for HDL Code Generation from
MATLAB

7

vi Contents

Shared Class and Function Reference for HDL Code
Generation from MATLAB and Simulink

8

vii

Apps — Alphabetical List

1

HDL Coder
Generate HDL code from MATLAB code

Description
The HDL Coder app generates synthesizable HDL code from MATLAB® code that is
supported for hardware. You can generate VHDL or Verilog HDL code that you can
integrate into existing HDL applications outside of MATLAB.

The workflow-based user interface steps you through the code generation process. Using
the app, you can:

• Create a project or open an existing HDL Coder project.
• Specify the MATLAB function and the MATLAB testbench for your project.
• Propose input data types or autodefine data types by specifying the MATLAB

testbench file.
• Convert floating-point MATLAB code to fixed-point HDL code.
• Specify the target device and synthesis tool to deploy the generated HDL code on the

target hardware.
• Access generated files and view code generation reports.
• Verify the numerical behavior of generated HDL code with HDL test bench,

cosimulation, or FPGA-in-the loop.
• Synthesize, and place and route the generated HDL code for the specified hardware

with the Generic ASIC/FPGA workflow.
• Integrate your generated HDL IP core with the embedded processor by using IP

Core Generation workflow.
• Generate a programming file and download it to the target device with the FPGA

Turnkey workflow.

Open the HDL Coder App
• MATLAB Toolstrip: On the Apps tab, under Code Generation, click the HDL Coder

app icon.

1 Apps — Alphabetical List

1-2

• MATLAB command prompt: Enter hdlcoder.

Examples
• “HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm”

Programmatic Use
hdlcoder opens the HDL Coder app.

See Also
Apps
Fixed-Point Converter

Functions
codegen

Topics
“HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm”
“Guidelines for Efficient HDL Code”
“Create and Set Up Your Project”

Introduced in R2012a

 HDL Coder

1-3

Functions — Alphabetical List

2

checkhdl
Check subsystem or model for HDL code generation compatibility

Syntax
checkhdl(bdroot)
checkhdl('dut')
checkhdl(gcb)
output = checkhdl('system')

Description
checkhdl generates an HDL Code Generation Check Report, saves the report to the
target folder, and displays the report in a new window. Before generating HDL code, use
checkhdl to check your subsystems or models.

Note Running this command can activate the Open at simulation start setting for
blocks such as the Scope block and therefore invoke the block.

The report lists compatibility errors with a link to each block or subsystem that caused a
problem. To highlight and display incompatible blocks, click each link in the report while
keeping the model open.

The report file name is system_report.html. system is the name of the subsystem or
model passed in to checkhdl.

When a model or subsystem passes checkhdl, that does not imply code generation will
complete. checkhdl does not verify all block parameters.

checkhdl(bdroot) examines the current model for HDL code generation compatibility.

checkhdl('dut') examines the specified DUT model name, model reference name, or
subsystem name with full hierarchical path.

checkhdl(gcb) examines the currently selected subsystem.

2 Functions — Alphabetical List

2-2

output = checkhdl('system')

does not generate a report. Instead, it returns a 1xN struct array with one entry for each
error, warning, or message. system specifies a model or the full block path for a
subsystem at any level of the model hierarchy.

checkhdl reports three levels of compatibility problems:

• Errors: cause the code generation process to terminate. The report must not contain
errors to continue with HDL code generation.

• Warnings: indicate problems in the generated code, but allow HDL code generation to
continue.

• Messages: indication that some data types have special treatment. For example, the
HDL Coder software automatically converts single-precision floating-point data types
to double-precision because VHDL® and Verilog® do not support single-precision data
types.

Examples
Check the subsystem symmetric_fir within the model sfir_fixed for HDL code
generation compatibility and generate a compatibility report.

checkhdl('sfir_fixed/symmetric_fir')

Check the subsystem symmetric_fir_err within the model sfir_fixed_err for HDL
code generation compatibility, and return information on problems encountered in the
struct output.

output = checkhdl('sfir_fixed_err/symmetric_fir_err')
Starting HDL Check.
...
HDL Check Complete with 4 errors, warnings and messages.

The following MATLAB commands display the top-level structure of the struct output,
and its first cell.
output =

1x4 struct array with fields:
 path
 type
 message
 level

 checkhdl

2-3

output(1)

ans =

 path: 'sfir_fixed_err/symmetric_fir_err/Product'
 type: 'block'
 message: 'Unhandled mixed double and non-double datatypes at ports of block'
 level: 'Error'

See Also
makehdl

Topics
“Create HDL-Compatible Simulink Model”
“Check Your Model for HDL Compatibility”

Introduced in R2006b

2 Functions — Alphabetical List

2-4

hdladvisor
Display HDL Workflow Advisor

Syntax
hdladvisor(gcb)
hdladvisor(subsystem)
hdladvisor(model,'SystemSelector')

Description
hdladvisor(gcb) starts the HDL Workflow Advisor, passing the currently selected
subsystem within the current model as the DUT to be checked.

hdladvisor(subsystem) starts the HDL Workflow Advisor, passing in the path to a
specified subsystem within the model.

hdladvisor(model,'SystemSelector') opens a System Selector window that lets
you select a subsystem to be opened into the HDL Workflow Advisor as the device under
test (DUT) to be checked.

Examples
Open the subsystem symmetric_fir within the model sfir_fixed into the HDL
Workflow Advisor.

hdladvisor('sfir_fixed/symmetric_fir')

Open a System Selector window to select a subsystem within the current model. Then
open the selected subsystem into the HDL Workflow Advisor.

hdladvisor(gcs,'SystemSelector')

 hdladvisor

2-5

Alternatives
You can also open the HDL Workflow Advisor from the your model window by selecting
Code > HDL Code > HDL Workflow Advisor.

See Also
“HDL Workflow Advisor Tasks” | “Getting Started with the HDL Workflow Advisor”

Introduced in R2010a

2 Functions — Alphabetical List

2-6

hdlcoder.optimizeDesign
Automatic iterative HDL design optimization

Syntax
hdlcoder.optimizeDesign(model, optimizationCfg)
hdlcoder.optimizeDesign(model, cpGuidanceFile)

Description
hdlcoder.optimizeDesign(model, optimizationCfg) automatically optimizes
your generated HDL code based on the optimization configuration you specify.

hdlcoder.optimizeDesign(model, cpGuidanceFile) regenerates the optimized
HDL code without rerunning the iterative optimization, by using data from a previous run
of hdlcoder.optimizeDesign.

Examples

Maximize clock frequency

Maximize the clock frequency for a model, sfir_fixed, by performing up to 10
optimization iterations.

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';
dutSubsys = 'symmetric_fir';
open_system(model);
hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param(model,'SynthesisTool','Xilinx ISE', ...
 'SynthesisToolChipFamily','Zynq', ...

 hdlcoder.optimizeDesign

2-7

 'SynthesisToolDeviceName','xc7z030', ...
 'SynthesisToolPackageName','fbg484', ...
 'SynthesisToolSpeedValue','-3')

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Save your model.

You must save your model if you want to regenerate code later without rerunning the
iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Set the iteration limit to 10.

oc.IterationLimit = 10;

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Iteration 0
Generate and synthesize HDL code ...
(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66 Iteration 1
Generate and synthesize HDL code ...
(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72 Iteration 2
Generate and synthesize HDL code ...
(CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22 Iteration 3
Generate and synthesize HDL code ...
(CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37 Iteration 4
Generate and synthesize HDL code ...
(CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04 Iteration 5

2 Functions — Alphabetical List

2-8

Generate and synthesize HDL code ...
Exiting because critical path cannot be further improved.
Summary report: summary.html
Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s
Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66
Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72
Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22
Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37
Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04
Final results are saved in
 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-04-41
Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after five iterations because the fourth and fifth iterations had the
same critical path, which indicates that the coder has found the minimum critical path.
The design’s maximum clock frequency after optimization is 1 / 9.55 ns, or 104.71 MHz.

Optimize for specific clock frequency

Optimize a model, sfir_fixed, to a specific clock frequency, 50 MHz, by performing up
to 10 optimization iterations, and do not generate an HDL test bench.

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';
dutSubsys = 'symmetric_fir';
open_system(model);
hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param(model,'SynthesisTool','Xilinx ISE', ...
 'SynthesisToolChipFamily','Zynq', ...
 'SynthesisToolDeviceName','xc7z030', ...
 'SynthesisToolPackageName','fbg484', ...
 'SynthesisToolSpeedValue','-3')

Disable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','off');

Save your model.

 hdlcoder.optimizeDesign

2-9

You must save your model if you want to regenerate code later without rerunning the
iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to stop after it reaches a clock frequency
of 50MHz, or 10 iterations, whichever comes first.

oc.ExplorationMode = ...
 hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency;
oc.TargetFrequency = 50;
oc.IterationLimit = 10; =

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed','GenerateHDLTestBench','off');
hdlset_param('sfir_fixed','HDLSubsystem','sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed','SynthesisTool','Xilinx ISE');
hdlset_param('sfir_fixed','SynthesisToolChipFamily','Zynq');
hdlset_param('sfir_fixed','SynthesisToolDeviceName','xc7z030');
hdlset_param('sfir_fixed','SynthesisToolPackageName','fbg484');
hdlset_param('sfir_fixed','SynthesisToolSpeedValue','-3');

Iteration 0
Generate and synthesize HDL code ...
(CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02 Iteration 1
Generate and synthesize HDL code ...
Exiting because constraint (20.00 ns) has been met (16.26 ns).
Summary report: summary.html
Achieved Critical Path (CP) Latency : 16.26 ns Elapsed : 134.02 s
Iteration 0: (CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02
Final results are saved in
 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-14
Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after one iteration because it has achieved the target clock
frequency. The critical path is 16.26 ns, a clock frequency of 61.50 GHz.

2 Functions — Alphabetical List

2-10

Resume clock frequency optimization using saved data

Run additional optimization iterations for a model, sfir_fixed, using saved iteration
data, because you terminated in the middle of a previous run.

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';
dutSubsys = 'symmetric_fir';
open_system(model);
hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options to the same values as in the interrupted
run.

hdlset_param(model,'SynthesisTool','Xilinx ISE', ...
 'SynthesisToolChipFamily','Zynq', ...
 'SynthesisToolDeviceName','xc7z030', ...
 'SynthesisToolPackageName','fbg484', ...
 'SynthesisToolSpeedValue','-3')

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to run using data from the first iteration of
a previous run.

oc.ResumptionPoint = 'Iter5-07-Jan-2014-17-04-29';

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed','HDLSubsystem','sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed','SynthesisTool','Xilinx ISE');
hdlset_param('sfir_fixed','SynthesisToolChipFamily','Zynq');
hdlset_param('sfir_fixed','SynthesisToolDeviceName','xc7z030');
hdlset_param('sfir_fixed','SynthesisToolPackageName','fbg484');
hdlset_param('sfir_fixed','SynthesisToolSpeedValue','-3');

 hdlcoder.optimizeDesign

2-11

Try to resume from resumption point: Iter5-07-Jan-2014-17-04-29
Iteration 5
Generate and synthesize HDL code ...
Exiting because critical path cannot be further improved.
Summary report: summary.html
Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s
Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66
Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72
Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22
Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37
Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04
Final results are saved in
 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-30
Validation model: gm_sfir_fixed_vnl

Then coder stops after one additional iteration because it has achieved the target clock
frequency. The critical path is 9.55 ns, or a clock frequency of 104.71 MHz.

Regenerate code using original design and saved optimization data

Regenerate HDL code using the original model, sfir_fixed, and saved data from the
final iteration of a previous optimization run.

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';
dutSubsys = 'symmetric_fir';
open_system(model);
hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options to the same values as in the original run.

hdlset_param(model,'SynthesisTool','Xilinx ISE', ...
 'SynthesisToolChipFamily','Zynq', ...
 'SynthesisToolDeviceName','xc7z030', ...
 'SynthesisToolPackageName','fbg484', ...
 'SynthesisToolSpeedValue','-3')

Regenerate HDL code using saved optimization data from cpGuidance.mat.

hdlcoder.optimizeDesign(model,
 'hdlsrc/sfir_fixed/hdlexpl/Final-19-Dec-2013-23-05-04/cpGuidance.mat')

2 Functions — Alphabetical List

2-12

Final results are saved in
 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-16-52
Validation model: gm_sfir_fixed_vnl

Input Arguments
model — Model name
character vector

Model name, specified as a character vector.
Example: 'sfir_fixed'

optimizationCfg — Optimization configuration
hdlcoder.OptimizationConfig

Optimization configuration, specified as an hdlcoder.OptimizationConfig object.

cpGuidanceFile — File containing saved optimization data
'' (default) | character vector

File that contains saved data from the final optimization iteration, including relative path,
specified as a character vector. Use this file to regenerate optimized code without
rerunning the iterative optimization.

The file name is cpGuidance.mat. You can find the file in the iteration folder name that
starts with Final, which is a subfolder of hdlexpl.
Example: 'hdlexpl/Final-11-Dec-2013-23-17-10/cpGuidance.mat'

See Also
Classes
hdlcoder.OptimizationConfig

Functions
hdlcoder.supportedDevices

Topics
“Automatic Iterative Optimization”

 hdlcoder.optimizeDesign

2-13

“Tool and Device”

Introduced in R2014a

2 Functions — Alphabetical List

2-14

importhdl
Import Verilog code and generate Simulink model

importhdl imports and parses the specified Verilog files to generate the corresponding
Simulink® model.

Syntax
importhdl(FileNames)
importhdl(FileNames,Name,Value)

Description
importhdl(FileNames) imports the specified Verilog files and generates the
corresponding Simulink model.

importhdl(FileNames,Name,Value) imports the specified Verilog files and generates
the corresponding Simulink model with options specified by one or more name-value pair
arguments.

Examples

Generate Simulink Model From Single Verilog File

This example shows how you can import a file containing Verilog code and generate the
corresponding Simulink™ model.

Specify Input Verilog File

Make sure that the input HDL file does not contain any syntax errors, is synthesizable,
and uses constructs that are supported by HDL import. This example shows a Verilog
code of a comparator.

edit('comparator.v')

 importhdl

2-15

Import Verilog File

To import the HDL file and generate the Simulink™ model, pass the file name as a
character vector to the importhdl function.

importhdl('comparator.v')

Parsing comparator.v.
Top Module of the source: 'comparator'.
Identified ClkName::clk.
Identified RstName::rst.
Hdl Import parsing done.
Creating Target model comparator
Generating Dot Layout...

2 Functions — Alphabetical List

2-16

Start Layout...
Working on hierarchy at ---> 'comparator'.
Laying out components.
Working on hierarchy at ---> 'comparator/comparator'.
Laying out components.
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Setting the model parameters.
Generated model as C:\Temp\examples\examples\hdlcoder-ex77699673\hdlimport\comparator\comparator.slx.
HDL Import completed.

HDL import parses the input file and displays messages of the import process in the
MATLAB™ Command Window. The import provides a link to the generated Simulink™
model comparator.slx. The generated model uses the same name as the top module in
the input Verilog file.

Examine Generated Simulink™ Model

To open the generated Simulink™ model, select the link. The model is saved in the
hdlimport/comparator path relative to the current folder. You can simulate the model
and observe the simulation results.

addpath('hdlimport/comparator')
open_system('comparator.slx')
sim('comparator.slx')

Generate Simulink Model From Multiple Verilog Files

This example shows how you can import multiple files containing Verilog code and
generate the corresponding Simulink™ model.

 importhdl

2-17

Specify input Verilog File

Make sure that the input HDL files do not contain any syntax errors, are synthesizable,
and use constructs that are supported by HDL import. For example, this code shows three
Verilog files that use module instantiation to form a hierarchical design. One module
example1.v implements a simple sequential circuit based on an if-else condition. The
other module example2.v implements a simple combinational arithmetic expression.

edit('example1.v')
edit('example2.v')

2 Functions — Alphabetical List

2-18

A top module contained in file example.v instantiates the two modules in example1.v
and example2.v

edit('example.v')

 importhdl

2-19

Import Verilog Files

To import the HDL file and generate the Simulink™ model, pass the file names as a cell
array of character vectors to the importhdl function. By default, HDL import identifies
the top module and clock bundle when parsing the input file.

importhdl({'example.v','example1.v','example2.v'})

Parsing example.v.
Parsing example1.v.
Parsing example2.v.
Top Module of the source: 'example'.
Identified ClkName::clk.
Hdl Import parsing done.
Creating Target model example
Generating Dot Layout...
Start Layout...
Working on hierarchy at ---> 'example'.
Laying out components.
Working on hierarchy at ---> 'example/example'.
Laying out components.
Working on hierarchy at ---> 'example/example/example1'.

2 Functions — Alphabetical List

2-20

Laying out components.
Applying Dot Layout...
Drawing block edges...
Working on hierarchy at ---> 'example/example/example2'.
Laying out components.
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Setting the model parameters.
Generated model as C:\Temp\examples\examples\hdlcoder-ex56732899\hdlimport\example\example.slx.
HDL Import completed.

HDL import parses the input file and displays messages of the import process in the
MATLAB™ Command Window. The import provides a link to the generated Simulink™
model example.slx. The generated model uses the same name as the top module that is
contained in the input Verilog file example1.v.

Examine Generated Simulink™ Model

To open the generated Simulink™ model, select the link. The model is saved in the
hdlimport/example path relative to the current folder. You can simulate the model and
observe the simulation results.

addpath('hdlimport/example')
open_system('example.slx')

 importhdl

2-21

To avoid a division by zero, you can suppress the warning diagnostic before simulation.

Simulink.suppressDiagnostic({'example/example/example2/Div'}, ...
 'SimulinkFixedPoint:util:fxpDivisionByZero')
sim('example')

You can see the hierarchy of Subsystems that implement the Verilog code that uses
module instantiation.

open_system('example/example/example1')

2 Functions — Alphabetical List

2-22

open_system('example/example/example2')

Generate Simulink Model From Verilog Files with BlackBox Modules

This example shows how you can import multiple files containing Verilog code and
generate the corresponding Simulink™ model. When you import multiple files, if you want
to obfuscate the HDL code or if your files contain HDL code for vendor-specific IPs, you
can import the HDL code as a BlackBox module using the importhdl function.

Specify input Verilog Files

Make sure that the input HDL files do not contain any syntax errors, are synthesizable,
and use constructs that are supported by HDL import. For example, this code shows three

 importhdl

2-23

Verilog files that use module instantiation to form a hierarchical design. One module
sequentialexp.v implements a simple sequential circuit based on an if-else condition.
The other module comditionalcomb.v implements a simple combinational arithmetic
expression.

edit('conditionalcomb.v')
edit('sequentialexp.v')
edit('intelip.v')

2 Functions — Alphabetical List

2-24

 importhdl

2-25

See that the sequentialexp.v module instantiates an Intel® IP that implements a
single-precision floating-point adder.

A top module top contained in file blackboxtop.v instantiates the two modules in
conditionalcomb.v and sequentialexp.v

edit('blackboxtop.v')

2 Functions — Alphabetical List

2-26

Import Verilog Files

To import the HDL file and generate the Simulink™ model, pass the file names as a cell
array of character vectors to the importhdl function. By default, HDL import identifies
the top module and clock bundle when parsing the input file.

importhdl({'blackboxtop.v','conditionalcomb.v','sequentialexp.v','intelip.v'}, ...
 'topModule','top','blackBoxModule','intelip')

Parsing blackboxtop.v.
Parsing conditionalcomb.v.
Parsing sequentialexp.v.
Parsing intelip.v.
Top Module of the source: 'top'.
Identified ClkName::clk.
Hdl Import parsing done.
Creating Target model top
Generating Dot Layout...
Start Layout...
Working on hierarchy at ---> 'top'.
Laying out components.
Working on hierarchy at ---> 'top/top'.

 importhdl

2-27

Laying out components.
Working on hierarchy at ---> 'top/top/u_comb'.
Laying out components.
Applying Dot Layout...
Drawing block edges...
Working on hierarchy at ---> 'top/top/u_seq'.
Laying out components.
Working on hierarchy at ---> 'top/top/u_seq/u_intelip'.
Laying out components.
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Setting the model parameters.
Generated model as C:\Temp\examples\examples\hdlcoder-ex63017378\hdlimport\top\top.slx.
HDL Import completed.

HDL import parses the input file and displays messages of the import process in the
MATLAB™ Command Window. The import provides a link to the generated Simulink™
model top.slx. The generated model uses the same name as the top module that is
contained in the input Verilog file conditionalcomb.v.

Examine Generated Simulink™ Model

To open the generated Simulink™ model, select the link. The model is saved in the
hdlimport/top path relative to the current folder. You can simulate the model and
observe the simulation results.

addpath('hdlimport/top')
open_system('top.slx')
set_param('top','SimulationCommand','update')

2 Functions — Alphabetical List

2-28

 importhdl

2-29

To avoid a division by zero, you can suppress the warning diagnostic before simulation.

Simulink.suppressDiagnostic({'top/top/u_seq/Div'}, ...
 'SimulinkFixedPoint:util:fxpDivisionByZero')
sim('top')

You can see the hierarchy of Subsystems that implement the Verilog code that uses
module instantiation.

open_system('top/top/u_comb')

If you open the Subsystem that implements the sequential circuit, you can open the
u_intelip Subsystem to see the blackbox implementation.

open_system('top/top/u_seq')

2 Functions — Alphabetical List

2-30

open_system('top/top/u_seq/u_intelip')

Generate Simulink Model from Verilog Code for Various Operators

This example shows how you can import Verilog code that contains these operators and
generate the corresponding Simulink™ model:

• Arithmetic

 importhdl

2-31

• Logical
• XOR
• Bitwise
• Conditional
• Relational
• Concatenation

Specify Input Verilog File

Make sure that the input HDL file does not contain any syntax errors, is synthesizable,
and uses constructs for the various operators. For example, this Verilog code shows
various operators.

edit('VerilogOperators.v')

2 Functions — Alphabetical List

2-32

Import Verilog File

To import the HDL file and generate the Simulink™ model, pass the file name as a
character vector to the importhdl function.

importhdl('VerilogOperators.v')

Parsing VerilogOperators.v.
Top Module of the source: 'VerilogOperators'.
Hdl Import parsing done.
Creating Target model VerilogOperators
Generating Dot Layout...

 importhdl

2-33

Start Layout...
Working on hierarchy at ---> 'VerilogOperators'.
Laying out components.
Working on hierarchy at ---> 'VerilogOperators/VerilogOperators'.
Laying out components.
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Generated model as C:\Temp\examples\examples\hdlcoder-ex29847655\hdlimport\VerilogOperators\VerilogOperators.slx.
HDL Import completed.

HDL import parses the input file and displays messages of the import process in the
MATLAB™ Command Window. The import provides a link to the generated Simulink™
model VerilogOperators.slx. The generated model uses the same name as the top
module in the input Verilog file.

Examine Generated Simulink™ Model

To open the generated Simulink™ model, select the link. The model is saved in the
hdlimport/VerilogOperators path relative to the current folder. You can simulate the
model and observe the simulation results.

addpath('hdlimport/VerilogOperators')
open_system('VerilogOperators.slx')
sim('VerilogOperators.slx')

2 Functions — Alphabetical List

2-34

Generate Simulink Model from Verilog Code That Infers Simple Dual Port RAM

This example shows how you can import a file containing Verilog code and infer a Simple
Dual Port RAM in the Simulink™ model that gets generated.

Specify Input Verilog File

Make sure that the input HDL file does not contain any syntax errors, is synthesizable,
and uses constructs that are supported by HDL import. This example shows the Verilog
code.

edit('simple_dual_port_ram.v')

 importhdl

2-35

Import Verilog File

To import the HDL file and generate the Simulink™ model, pass the file name as a
character vector to the importhdl function.

importhdl('simple_dual_port_ram.v')

2 Functions — Alphabetical List

2-36

Parsing simple_dual_port_ram.v.
Top Module of the source: 'SimpleDualPortRAM'.
Identified ClkName::clk.
Identified ClkEnbName::enb.
Hdl Import parsing done.
Creating Target model SimpleDualPortRAM
Generating Dot Layout...
Start Layout...
Working on hierarchy at ---> 'SimpleDualPortRAM'.
Laying out components.
Working on hierarchy at ---> 'SimpleDualPortRAM/SimpleDualPortRAM'.
Laying out components.
Applying Dot Layout...
Drawing block edges...
Applying Dot Layout...
Drawing block edges...
Setting the model parameters.
Generated model as C:\Temp\examples\examples\hdlcoder-ex67646187\hdlimport\SimpleDualPortRAM\SimpleDualPortRAM.slx.
HDL Import completed.

HDL import parses the input file and displays messages of the import process in the
MATLAB™ Command Window. The import provides a link to the generated Simulink™
model SimpleDualPortRAM.slx. The generated model uses the same name as the top
module in the input Verilog file.

Examine Generated Simulink™ Model

To open the generated Simulink™ model, select the link. The model is saved in the
hdlimport/SimpleDualPortRAM path relative to the current folder. You can simulate
the model and observe the simulation results.

addpath('hdlimport/SimpleDualPortRAM')
open_system('SimpleDualPortRAM.slx')
sim('SimpleDualPortRAM.slx')

 importhdl

2-37

If you navigate the model, you see the Simple Dual Port RAM block.

open_system('SimpleDualPortRAM/SimpleDualPortRAM')

2 Functions — Alphabetical List

2-38

Input Arguments
FileNames — Names of HDL files to import
'Filename' | {'Filename1','Filename2',…,'FilenameN'} | 'Foldername'

Names of HDL files to import for generation of the Simulink model. By default,
importhdl imports Verilog files. To import:

• One HDL file, specify the file name as a character vector.
• Multiple HDL files, specify the file names as a cell array of character vectors.
• All HDL files in a folder, specify the folder name as a character vector.
• Multiple folders and combinations of files and folders, specified as cell array of

character vectors.

Example: importhdl('example') imports the specified Verilog file. If example is a
subfolder in the current working folder, HDL import generates a Simulink model for
all .vhd files in that folder.
Example: importhdl({'top.v','subsystem1.v','subsystem2.v'}) imports the
specified Verilog files and generates the corresponding Simulink model.

 importhdl

2-39

Example: importhdl(pwd) imports all Verilog files in the current folder and generates
the corresponding Simulink model.
Example: importhdl('root/example/hdlsrc') imports all Verilog files on the
specified path and generates the corresponding Simulink model. You can specify a
relative or absolute path.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: importhdl('root/example/hdlsrc') imports all Verilog files in the
specified path and generates the corresponding Simulink model. You can specify a
relative or absolute path.

Language — Language of input HDL file
'Verilog' (default)

Language of input source file that contains the HDL code, specified as a character vector.
If you specified a VHDL file, HDL import generates an error.
Example: importhdl('fifo.v','Language','Verilog') imports the Verilog file
fifo.v and generates the corresponding Simulink model fifo.slx.

topModule — Name of top module or entity
Identified by parsing input file (default) | character vector | string scalar

Top-level module name in the HDL code, specified as a character vector. This name
becomes the name of the top-level Subsystem from which HDL import constructs the
hierarchy of subsystems in the generated Simulink model. If the input HDL files contain
more than one top module, specify the top-level module to use for generating the
Simulink model by using the TopModule property.
Example: importhdl('full_adder.v','TopModule','two_half_adders')
imports the Verilog file full_adder.v and generates the corresponding Simulink model
full_adder.slx with two_half_adders as the top-level Subsystem.

clockBundle — Clock bundle names
{'clock', 'reset', 'enable'} (default) | cell array of character vectors

2 Functions — Alphabetical List

2-40

Names of clock, reset, and clock enable signals for sequential circuits, specified as a cell
array of character vector. Default names for the clock bundle signals are:

• Clock signal - clk, clock
• Reset signal - rst, reset
• Clock Enable signal - clk_enb, clk_en, clk_enable, enb, enable

If you do not specify the clock bundle information, HDL import uses the default values.
When parsing the input file, if HDL import identifies a clock name that is different from
the clock name specified by the ClockBundle, the import generates an error.
Example: importhdl('example.v','clockBundle',{'clk','rst','clk_enb'})
imports the Verilog file example.v with the specified clock bundle information.

blackBoxModule — BlackBox module names
'' (default) | character vector | cell array of character vectors

Name or names of modules in the Verilog input files to be imported as BlackBox
subsystems in the generated Simulink model. The Subsystem block that is imported as
BlackBox uses the input and output ports that you provide to the module definition. Inside
the Subsystem, the input ports are connected to Terminator blocks, Constant blocks with
a value of zero are connected to the output ports. Use this capability to import vendor-
specific IPs as BlackBox subsystems in your model.
Example:
importhdl({'example.v,'example1.v','example2.v','xilinxIP.v},'topMod
ule','top','blackBoxModule','xilinxIP') imports the specified Verilog files
witjh xilinxIP as a BlackBox module. The corresponding Subsystem in the Simulink
model has the input ports connected to Terminator blocks and Constant blocks with
constant value of zero connected to the output ports.

See Also
checkhdl | makehdl

Topics
“Verilog HDL Import: Import Verilog Code and Generate Simulink Model”
“Supported Verilog Constructs for HDL Import”

 importhdl

2-41

Introduced in R2018b

2 Functions — Alphabetical List

2-42

hdlcoder.supportedDevices
Show supported target hardware and device details

Syntax
hdlcoder.supportedDevices

Description
hdlcoder.supportedDevices shows a link to a report that contains the device and
device property names for target devices supported by your synthesis tool.

You can use the supported target device information to set SynthesisToolChipFamily,
SynthesisToolDeviceName, SynthesisToolPackageName, and
SynthesisToolSpeedValue for your model.

To see the report link, you must have a synthesis tool set up. If you have more than one
synthesis tool available, you see a different report link for each synthesis tool.

Examples

Set the target device for your model

In this example, you set the target device for a model, sfir_fixed. Two synthesis tools
are available, Altera® Quartus II and Xilinx® ISE. The target device is a Xilinx Virtex-6
XC6VLX130T FPGA.

Show the supported target device reports.

hdlcoder.supportedDevices

Altera QUARTUS II Device List
Xilinx ISE Device List

 hdlcoder.supportedDevices

2-43

Click the Xilinx ISE Device List link to open the supported target device report
and view details for your target device.

Open the model, sfir_fixed.

sfir_fixed

Set the SynthesisToolChipFamily, SynthesisToolDeviceName,
SynthesisToolPackageName, and SynthesisToolSpeedValue model parameters
based on details from the supported target device report.

hdlset_param('sfir_fixed',
 'SynthesisToolChipFamily','Virtex6',
 'SynthesisToolDeviceName','xc6vlx130t',
 'SynthesisToolPackageName','ff484',
 'SynthesisToolSpeedValue','-1')

View the nondefault parameters for your model, including target device information.

hdldispmdlparams

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
HDL CodeGen Parameters (non-default)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SynthesisTool : 'Xilinx ISE'
SynthesisToolChipFamily : 'Virtex6'
SynthesisToolDeviceName : 'xc6vlx130t'
SynthesisToolPackageName : 'ff484'
SynthesisToolSpeedValue : -1

See Also

Topics
“Synthesis Tool Path Setup”
“Tool and Device”

Introduced in R2014a

2 Functions — Alphabetical List

2-44

hdldispblkparams
Display HDL block parameters with nondefault values

Syntax
hdldispblkparams(path)
hdldispblkparams(path,'all')

Description
hdldispblkparams(path) displays, for the specified block, the names and values of
HDL parameters that have nondefault values.

hdldispblkparams(path,'all') displays, for the specified block, the names and
values of all HDL block parameters.

Input Arguments
path

Path to a block or subsystem in the current model.

Default: None

'all'

If you specify 'all', hdldispblkparams displays the names and values of all HDL
properties of the specified block.

Examples
The following example displays nondefault HDL block parameter settings for a Sum of
Elements block).

 hdldispblkparams

2-45

hdldispblkparams('simplevectorsum/vsum/Sum of Elements')

%%
HDL Block Parameters ('simplevectorsum/vsum/Sum of Elements')
%%

Implementation

 Architecture : Linear

Implementation Parameters

 InputPipeline : 1

The following example displays HDL block parameters and values for the currently
selected block, (a Sum of Elements block).
hdldispblkparams(gcb,'all')

%%
HDL Block Parameters ('simplevectorsum/vsum/Sum of
Elements')
%%

Implementation

 Architecture : Linear

Implementation Parameters

 InputPipeline : 0
 OutputPipeline : 0

See Also
“Set and View HDL Block Parameters”

Introduced in R2010b

2 Functions — Alphabetical List

2-46

hdldispmdlparams
Display HDL model parameters with nondefault values

Syntax
hdldispmdlparams(model)
hdldispmdlparams(model,'all')

Description
hdldispmdlparams(model) displays, for the specified model, the names and values of
HDL parameters that have nondefault values.

hdldispmdlparams(model,'all') displays the names and values of all HDL
parameters for the specified model.

Input Arguments
model

Name of an open model.

Default: None

'all'

If you pass in 'all' , hdldispmdlparams displays the names and values of all HDL
properties of the specified model.

Examples
The following example displays HDL properties of the current model that have nondefault
values.

 hdldispmdlparams

2-47

 hdldispmdlparams(bdroot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
HDL CodeGen Parameters (non-default)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CodeGenerationOutput : 'GenerateHDLCodeAndDisplayGeneratedModel'
HDLSubsystem : 'simplevectorsum_2atomics/Subsystem'
OptimizationReport : 'on'
ResetInputPort : 'rst'
ResetType : 'Synchronous'

The following example displays HDL properties and values of the current model.
 hdldispmdlparams(bdroot,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%
HDL CodeGen Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%

AddPipelineRegisters : 'off'
Backannotation : 'on'
BlockGenerateLabel : '_gen'
CheckHDL : 'off'
ClockEnableInputPort : 'clk_enable'
.
.
.
VerilogFileExtension : '.v'

See Also
“View HDL Model Parameters”

Introduced in R2010b

2 Functions — Alphabetical List

2-48

hdlget_param
Return value of specified HDL block-level parameter for specified block

Syntax
p = hdlget_param(block_path,prop)

Description
p = hdlget_param(block_path,prop) gets the value of a specified HDL property of
a block or subsystem, and returns the value to the output variable.

Input Arguments
block_path

Path to a block or subsystem in the current model.

Default: None

prop

A character vector that designates one of the following:

• The name of an HDL block property of the block or subsystem specified by
block_path.

• 'all' : If prop is set to 'all', hdlget_param returns Name,Value pairs for HDL
properties of the specified block.

Default: None

 hdlget_param

2-49

Output Arguments
p

p receives the value of the HDL block property specified by prop. The data type and
dimensions of p depend on the data type and dimensions of the value returned. If prop is
set to 'all', p is a cell array.

Examples
In the following example hdlget_param returns the value of the HDL block parameter
OutputPipeline to the variable p.

 p = hdlget_param(gcb,'OutputPipeline')

p =

 3

In the following example hdlget_param returns HDL block parameters and values for
the current block to the cell array p.
p = hdlget_param(gcb,'all')

p =

 'Architecture' 'Linear' 'InputPipeline' [0] 'OutputPipeline' [0]

Tips
• Use hdlget_param only to obtain the value of HDL block parameters (see “HDL

Block Properties: General” for a list of block implementation parameters). Use
hdldispmdlparams to see the values of HDL model parameters. To obtain the value
of general model parameters, use the get_param function.

See Also
hdlrestoreparams | hdlsaveparams | hdlset_param

Introduced in R2010b

2 Functions — Alphabetical List

2-50

hdllib
Display blocks that are compatible with HDL code generation

Syntax
hdllib
hdllib('off')
hdllib('html')
hdllib('librarymodel')

Description
hdllib displays the blocks that are supported for HDL code generation, and for which
you have a license, in the Library Browser. To build models that are compatible with the
HDL Coder software, use blocks from this Library Browser view.

If you close and reopen the Library Browser in the same MATLAB session, the Library
Browser continues to show only the blocks supported for HDL code generation. To show
all blocks, regardless of HDL code generation compatibility, at the command prompt,
enter hdllib('off').

hdllib('off') displays all the blocks for which you have a license in the Library
Browser, regardless of HDL code generation compatibility.

hdllib('html') creates a library of blocks that are compatible with HDL code
generation. It generates two additional HTML reports: a categorized list of blocks
(hdlblklist.html) and a table of blocks and their HDL code generation parameters
(hdlsupported.html).

To run hdllib('html'), you must have an HDL Coder license.

hdllib('librarymodel') displays blocks that are compatible with HDL code
generation in the Library Browser. To build models that are compatible with the HDL
Coder software, use blocks from this library.

 hdllib

2-51

The default library name is hdlsupported. After you generate the library, you can save it
to a folder of your choice.

To keep the library current, you must regenerate it each time that you install a new
software release.

To run hdllib('librarymodel'), you must have an HDL Coder license.

Examples

Display Supported Blocks in the Library Browser

To display blocks that are compatible with HDL code generation in the Library Browser:

hdllib

Generating view of HDL Coder compatible blocks in Library Browser.
To restore the Library Browser to the default Simulink view, enter "hdllib off".

2 Functions — Alphabetical List

2-52

Display All Blocks in the Library Browser

To display all blocks in the Library Browser, regardless of HDL code generation
compatibility:

hdllib('off')

Restoring Library Browser to default view; removing the HDL Coder compatibility filter.

 hdllib

2-53

Create a Supported Blocks Library and HTML Reports

To create a library and HTML reports showing the blocks that are compatible with HDL
code generation:

hdllib('html')

2 Functions — Alphabetical List

2-54

HDL supported block list hdlblklist.html
HDL implementation list hdlsupported.html

The hdlsupported library opens. To view the reports, click the hdlblklist.html and
hdlsupported.html links.

Create a Supported Blocks Library

To create a library that contains blocks that are compatible with HDL code generation:

hdllib('librarymodel')

The hdlsupported block library opens.

 hdllib

2-55

See Also
“Supported Blocks”

Topics
“Show Blocks Supported for HDL Code Generation”
“View HDL-Specific Block Documentation”
“Create HDL-Compatible Simulink Model”

Introduced in R2006b

2 Functions — Alphabetical List

2-56

hdlmodelchecker
Open HDL Model Checker

Syntax
hdlmodelchecker(subsystem)
hdlmodelchecker(model)

Description
hdlmodelchecker(subsystem) opens the Model Checker for the subsystem within the
model.

hdlmodelchecker(model) opens the Model Checker for the model.

Examples
Open the HDL Model Checker For a Model

This example shows how to open the HDL Model Checker for the sfir_single model.

sfir_single

 hdlmodelchecker

2-57

To open the HDL Model Checker for the sfir_single model, enter:

hdlmodelchecker('sfir_single')

Updating Model Advisor cache…
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

2 Functions — Alphabetical List

2-58

Open the HDL Model Checker For a Subsystem

This example shows how to open the HDL Model Checker for the symmetric fir
subsystem within the sfir_single model.

sfir_single

 hdlmodelchecker

2-59

To open the HDL Model Checker for the Symmetric fir subsystem, enter:

hdlmodelchecker('sfir_single/symmetric_fir')

2 Functions — Alphabetical List

2-60

Input Arguments
subsystem — Subsystem name
character vector

Subsystem name or handle, specified as a character vector.
Data Types: char

model — Model name
character vector

Model name or handle, specified as a character vector.
Data Types: char

 hdlmodelchecker

2-61

See Also

Topics
“Getting Started with the HDL Model Checker”
“Model Checks in HDL Coder”

Introduced in R2017b

2 Functions — Alphabetical List

2-62

hdlrestoreparams
Restore block- and model-level HDL parameters to model

Syntax
hdlrestoreparams(dut)
hdlrestoreparams(dut,filename)

Description
hdlrestoreparams(dut) restores to the specified model the default block- and model-
level HDL settings.

hdlrestoreparams(dut,filename) restores to the specified model the block- and
model-level HDL settings from a previously saved file.

Examples

Save and Restore HDL-Related Model Parameters

This example shows how to set HDL parameters on a model and save the parameters in a
MATLAB® script.

Set Model HDL Parameters

Open the sfir_fixed model.

sfir_fixed

 hdlrestoreparams

2-63

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

Set HDL-related model parameters for the symmetric_fir subsystem.

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3)
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5)

Save Model HDL Parameters

Verify that model parameters are set.

2 Functions — Alphabetical List

2-64

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);
hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

Save the model parameters to a MATLAB® script, sfir_saved_params.m.

hdlsaveparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m')

Verify Saved Parameters

Reset HDL-related model parameters to default values.

hdlrestoreparams('sfir_fixed/symmetric_fir')

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed');

Restore the saved model parameters from sfir_saved_params.m.

hdlrestoreparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m')

Verify that the saved model parameters are restored

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);

 hdlrestoreparams

2-65

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

Input Arguments
dut — DUT subsystem name
character vector

DUT subsystem name, specified as a character vector, with full hierarchical path.
Example: 'modelname/subsysTarget'
Example: 'modelname/subsysA/subsysB/subsysTarget'

filename — Name of file
character vector

Name of file containing previously saved HDL model parameters.
Example: 'mymodel_saved_params.m'

See Also
hdlsaveparams

Introduced in R2012b

2 Functions — Alphabetical List

2-66

hdlsaveparams
Save nondefault block- and model-level HDL parameters

Syntax
hdlsaveparams(dut)
hdlsaveparams(dut,filename)
hdlsaveparams(dut,filename,force_overwrite)
varname = hdlsaveparams(dut)

Description
hdlsaveparams(dut) displays nondefault block- and model-level HDL parameters.

hdlsaveparams(dut,filename) saves nondefault block- and model-level HDL
parameters to a MATLAB script.

hdlsaveparams(dut,filename,force_overwrite) saves nondefault block- and
model-level HDL parameters to a MATLAB script and specifies whether to overwrite the
previously saved parameters MATLAB script.

varname = hdlsaveparams(dut) saves the nondefault block- and model-level HDL
parameters to a structure array, varname.

Examples

Display HDL-Related Nondefault Model Parameters

Open the model.

sfir_fixed

 hdlsaveparams

2-67

Set HDL-related model parameters for the symmetric_fir subsystem.

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3)
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5)

Display HDL-related nondefault model parameters for the symmetric_fir subsystem.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);
hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

2 Functions — Alphabetical List

2-68

The output identifies the subsystem and displays its HDL-related parameter values.

Save and Restore HDL-Related Model Parameters

This example shows how to set HDL parameters on a model and save the parameters in a
MATLAB® script.

Set Model HDL Parameters

Open the sfir_fixed model.

sfir_fixed

Verify that model parameters have default values.

 hdlsaveparams

2-69

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

Set HDL-related model parameters for the symmetric_fir subsystem.

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3)
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5)

Save Model HDL Parameters

Verify that model parameters are set.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);
hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

Save the model parameters to a MATLAB® script, sfir_saved_params.m.

hdlsaveparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m')

Verify Saved Parameters

Reset HDL-related model parameters to default values.

hdlrestoreparams('sfir_fixed/symmetric_fir')

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed');

Restore the saved model parameters from sfir_saved_params.m.

hdlrestoreparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m')

2 Functions — Alphabetical List

2-70

Verify that the saved model parameters are restored

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);
hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

Overwrite Previously Saved HDL Parameters File

This example shows how to set HDL parameters on a model, save the parameters in a
MATLAB® script, and then overwrite the saved parameters.

Set Model HDL Parameters

Open the sfir_fixed model.

sfir_fixed

 hdlsaveparams

2-71

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

Set HDL-related model parameters for the symmetric_fir subsystem.

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3)
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5)

Save Model HDL Parameters

Verify that model parameters are set.

2 Functions — Alphabetical List

2-72

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);
hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

Save the model parameters to a MATLAB® script, sfir_saved_params.m.

hdlsaveparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m')

Verify Saved Parameters

Reset HDL-related model parameters to default values.

hdlrestoreparams('sfir_fixed/symmetric_fir')

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed');

Restore the saved model parameters from sfir_saved_params.m.

hdlrestoreparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m')

Verify that the saved model parameters are restored

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);
hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

Modify Saved HDL Parameters

Modify HDL-related model parameters set for the symmetric_fir subsystem.

 hdlsaveparams

2-73

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 4)
hdlset_param('sfir_fixed/symmetric_fir', 'OutputPipeline', 2)
hdlset_param('sfir_fixed', 'ShareAdders', 'on')

Overwrite Saved Parameters File

Set the force_overwrite flag to true to overwrite the parameters file
sfir_saved_parameters.m with the new parameters. If you do not specify this flag,
HDL Coder™ generates an error and doesn't overwrite the parameter values. When you
run hdlsaveparams with the parameter set to true, HDL Coder™ generates a warning
that it overwrites the file.

hdlsaveparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m','true')

Warning: HDL parameters file 'sfir_saved_params.m' already exists. By
overwriting it now, you will lose any parameter settings made earlier.

Verify Resaved Parameters

Reset HDL-related model parameters to default values.

hdlrestoreparams('sfir_fixed/symmetric_fir')

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed');

Restore the saved model parameters from sfir_saved_params.m.

hdlrestoreparams('sfir_fixed/symmetric_fir', 'sfir_saved_params.m')

Verify that the saved model parameters are restored

hdlsaveparams('sfir_fixed/symmetric_fir')

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'ShareAdders', 'on');

% Set SubSystem HDL parameters
hdlset_param('sfir_fixed/symmetric_fir', 'InputPipeline', 5);

2 Functions — Alphabetical List

2-74

hdlset_param('sfir_fixed/symmetric_fir', 'OutputPipeline', 2);
hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 4);

Save and Access Non-Default HDL Parameters in a Structure Array

This example shows how to save non-default HDL model and block parameters in a
structure array and access individual parameters.

Open the model

sfir_single
sim('sfir_single')

 hdlsaveparams

2-75

Save HDL Model and Block parameters

hparams = hdlsaveparams('sfir_single/symmetric_fir');

%% Set Model 'sfir_single' HDL parameters
hdlset_param('sfir_single', 'FloatingPointTargetConfiguration', hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT' ...
, 'MantissaMultiplyStrategy', 'FullMultiplier') ...
);
hdlset_param('sfir_single', 'HDLSubsystem', 'sfir_single/symmetric_fir');

% Set SubSystem HDL parameters
hdlset_param('sfir_single/symmetric_fir', 'InputPipeline', 1);
hdlset_param('sfir_single/symmetric_fir', 'OutputPipeline', 1);

View and Access Block Parameters

hparams

hparams =

 1x4 struct array with fields:

 object
 parameter
 value

To see specific non-default parameters saved in the structure, you can access individual
elements of the structure.

hparams(2)

ans =

 struct with fields:

 object: 'sfir_single'
 parameter: 'HDLSubsystem'
 value: 'sfir_single/symmetric_fir'

2 Functions — Alphabetical List

2-76

To view the parameters and values specified for the model, in the MATLAB™ Worksplace,
double-click the hparams variable. You see the fields of the structure array and the
corresponding values in the MATLAB Editor.

Input Arguments
dut — DUT subsystem name
character vector

DUT subsystem name, specified as a character vector, with full hierarchical path.
Example: 'modelname/subsysTarget'
Example: 'modelname/subsysA/subsysB/subsysTarget'

filename — Name of file
character vector

Name of file to which you are saving model parameters, specified as a character vector.
Example: 'mymodel_saved_params.m'

force_overwrite — Overwrite parameters file
boolean

Specify whether to overwrite the previously saved parameters file as a boolean.
Example: 'true'

 hdlsaveparams

2-77

Output Arguments
varname — Name of variable containing saved parameters
struct

Specify the name of the variable that contains the saved model parameters. The variable
are saved as a structure array.
Example: 'hparams'

See Also
hdlrestoreparams

Introduced in R2012b

2 Functions — Alphabetical List

2-78

hdlset_param
Set HDL-related parameters at model or block level

Syntax
hdlset_param(path,Name,Value)

Description
hdlset_param(path,Name,Value) sets HDL-related parameters in the block or model
referenced by path. The parameters to be set, and their values, are specified by one or
more Name,Value pair arguments. You can specify several name and value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
path

Path to the model or block for which hdlset_param is to set one or more parameter
values.

Default: None

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments, where Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Name

Name is a character vector that specifies one of the following:

 hdlset_param

2-79

• A model-level HDL-related property. See Properties — Alphabetical List for a list of
model-level properties, their data types and their default values.

• An HDL block property, such as an implementation name or an implementation
parameter. See “HDL Block Properties: General” for a list of block implementation
parameters.

Default: None

Value

Value is a value to be applied to the corresponding property in a Name,Value argument.

Default: Default value is dependent on the property.

Examples
The following example uses the sfir_fixed model to demonstrate how to locate a group
of blocks in a subsystem and specify the same output pipeline depth for each of the
blocks.
open sfir_fixed;
prodblocks = find_system('sfir_fixed/symmetric_fir', 'BlockType', 'Product');
for ii=1:length(prodblocks), hdlset_param(prodblocks{ii}, 'OutputPipeline', 2), end;

Tips
• When you set multiple parameters on the same model or block, use a single

hdlset_param command with multiple pairs of arguments, rather than multiple
hdlset_param commands. This technique is more efficient because using a single
call requires evaluating parameters only once.

• To set HDL block parameters for multiple blocks, use the find_system function to
locate the blocks of interest. Then, use a loop to iterate over the blocks and call
hdlset_param to set the desired parameters.

See Also
hdlget_param | hdlrestoreparams | hdlsaveparams

2 Functions — Alphabetical List

2-80

Topics
“Set and View HDL Block Parameters”
“Set HDL Block Parameters for Multiple Blocks”

Introduced in R2010b

 hdlset_param

2-81

hdlsetup
Set up model parameters for HDL code generation

Syntax
hdlsetup('modelname')

Description
hdlsetup('modelname') sets the parameters of the model specified by modelname to
common default values for HDL code generation. After using hdlsetup, you can use
set_param to modify these default settings.

Open the model before you invoke the hdlsetup command.

To see which model parameters are affected by hdlsetup, open hdlsetup.m.

How hdlsetup Configures Solver Options
hdlsetup configures the Solver options that are recommended or required by HDL
Coder. These are:

• Type: Fixed-step. (HDL Coder currently supports variable-step solvers under
limited conditions. See hdlsetup)

• Solver: Discrete (no continuous states). Other fixed-step solvers could be
selected, but this option is usually the best one for simulating discrete systems.

• Tasking mode: SingleTasking. HDL Coder does not currently support models that
execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as follows:

• Start Time: 0.0 s

2 Functions — Alphabetical List

2-82

• Stop Time: 10 s
• Fixed step size (fundamental periodic sample time) : auto

If Fixed step size is set to auto the step size is chosen automatically, based on the
sample times specified in the model. In the example model, only the Signal From
Workspace block specifies an explicit sample time (1 s); the other blocks inherit this
sample time.

The model start and stop times determine the total simulation time. This in turn
determines the size of data arrays that are generated to provide stimulus and output data
for generated test benches. For the example model, computation of 10 seconds of test
data does not take a significant amount of time. Computation of sample values for more
complex models can be time consuming. In such cases, you may want to decrease the
total simulation time.

The remaining parameters set by hdlsetup control error severity levels, data logging,
and model display options. If you want to view the complete set of model parameters
affected by hdlsetup, open hdlsetup.m in the MATLAB Editor.

The model parameter settings provided by are intended as useful defaults, but they may
not be optimal for your application. For example, hdlsetup sets a default Simulation
stop time of 10 s. A total simulation time of 1000 s would be more realistic for a test of
the sfir_fixed example model. If you would like to change the simulation time, enter
the desired value into the Simulation stop time field of the Simulink window.

See the “Model Parameters” table in the “Model and Block Parameters” section of the
Simulink documentation for a summary of model parameters.

Introduced in R2006b

 hdlsetup

2-83

hdlsetuptoolpath
Set up system environment to access FPGA synthesis software

Syntax
hdlsetuptoolpath('ToolName',TOOLNAME,'ToolPath',TOOLPATH)

Description
hdlsetuptoolpath('ToolName',TOOLNAME,'ToolPath',TOOLPATH) adds a third-
party FPGA synthesis tool to your system path. It sets up the system environment
variables for the synthesis tool. To configure one or more supported third-party FPGA
synthesis tools to use with HDL Coder, use the hdlsetuptoolpath function.

Before opening the HDL Workflow Advisor, add the tool to your system path. If you
already have the HDL Workflow Advisor open, see “Add Synthesis Tool for Current HDL
Workflow Advisor Session”.

Examples

Set Up Intel Quartus Prime
The following command sets the synthesis tool path to point to an installed Intel® Quartus
Prime Standard Edition 17.1 executable file. You must have already installed Altera
Quartus II.

hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath',...
 'C:\intel\17.1\quartus\bin\quartus.exe');

Set Up Xilinx ISE
The following command sets the synthesis tool path to point to an installed Xilinx ISE 14.7
executable file. You must have already installed Xilinx ISE.

2 Functions — Alphabetical List

2-84

hdlsetuptoolpath('ToolName','Xilinx ISE','ToolPath',...
 'C:\Xilinx\14.7\ISE_DS\ISE\bin\nt64\ise.exe');

Set Up Xilinx Vivado
The following command sets the synthesis tool path to point to an installed Vivado®

Design Suite 2017.4 batch file. You must have already installed Xilinx Vivado.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
 'C:\Xilinx\Vivado\2017.4\bin\vivado.bat');

Set Up Microsemi Libero SoC
The following command sets the synthesis tool path to point to an installed Microsemi®
Libero® Design Suite batch file. You must have already installed Microsemi Libero SoC.

hdlsetuptoolpath('ToolName','Microsemi Libero SoC','ToolPath',...
 'C:\Microsemi\Libero_SoC_v11.8\Designer\bin');

Input Arguments
TOOLNAME — Synthesis tool name
character vector

Synthesis tool name, specified as a character vector.
Example: 'Xilinx Vivado'

TOOLPATH — Full path to the synthesis tool executable or batch file
character vector

Full path to the synthesis tool executable or batch file, specified as a character vector.
Example: 'C:\Xilinx\Vivado\2017.2\bin\vivado.bat'

Tips
• If you have an icon for the tool on your Windows® desktop, you can find the full path to

the synthesis tool.

 hdlsetuptoolpath

2-85

1 Right-click the icon and select Properties.
2 Click the Shortcut tab.

• The hdlsetuptoolpath function changes the system path and system environment
variables for only the current MATLAB session. To execute hdlsetuptoolpath
programmatically when MATLAB starts, add hdlsetuptoolpath to your startup.m
script.

See Also
setenv | startup

Topics
“Supported Third-Party Tools and Hardware”
“Tool Setup”
“Add Synthesis Tool for Current HDL Workflow Advisor Session”

Introduced in R2011a

2 Functions — Alphabetical List

2-86

makehdl
Generate HDL RTL code from model, subsystem, or model reference

Syntax
makehdl(dut)
makehdl(dut,Name,Value)

Description
makehdl(dut) generates HDL code from the specified DUT model, subsystem, or model
reference.

Note Running this command can activate the Open at simulation start setting for
blocks such as the Scope block and therefore invoke the block.

makehdl(dut,Name,Value) generates HDL code from the specified DUT model,
subsystem, or model reference with options specified by one or more name-value pair
arguments.

Examples

Generate VHDL for the Current Model

This example shows how to generate VHDL for the symmetric FIR model.

Open the sfir_fixed model.

sfir_fixed

 makehdl

2-87

Generate HDL code for the current model with code generation options set to default
values.

makehdl('sfir_fixed/symmetric_fir','TargetDirectory','C:\GenVHDL\hdlsrc')

Generating HDL for 'sfir_fixed/symmetric_fir'.
Starting HDL check.
Begin VHDL Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as C:\GenVHDL\hdlsrc\sfir_fixed\symmetric_fir.vhd.
Creating HDL Code Generation Check Report file://C:\GenVHDL\hdlsrc\sfir_fixed\symmetric_fir_report.html
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

The generated VHDL code is saved in the hdlsrc folder.

2 Functions — Alphabetical List

2-88

Generate Verilog for a Subsystem Within a Model

Generate Verilog® for the subsystem symmetric_fir within the model sfir_fixed.

Open the sfir_fixed model.

sfir_fixed;

The model opens in a new Simulink® window.

Generate Verilog for the symmetric_fir subsystem.

makehdl('sfir_fixed/symmetric_fir', 'TargetLanguage', 'Verilog', ...
 'TargetDirectory', 'C:/Generate_Verilog/hdlsrc')

Generating HDL for 'sfir_fixed/symmetric_fir'.
Starting HDL check.

 makehdl

2-89

Begin Verilog Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as C:\Generate_Verilog\hdlsrc\sfir_fixed\symmetric_fir.v.
Creating HDL Code Generation Check Report file://C:\Generate_Verilog\hdlsrc\sfir_fixed\symmetric_fir_report.html
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

The generated Verilog code for the symmetric_fir subsystem is saved in hdlsrc
\sfir_fixed\symmetric_fir.v.

Close the model.

bdclose('sfir_fixed');

Check Subsystem for Compatibility with HDL Code Generation

Check that the subsystem symmetric_fir is compatible with HDL code generation, then
generate HDL.

Open the sfir_fixed model.

sfir_fixed

2 Functions — Alphabetical List

2-90

The model opens in a new Simulink® window.

Use the checkhdl function to check whether the symmetric_fir subsystem is
compatible with HDL code generation.

hdlset_param('sfir_fixed','TargetDirectory','C:/HDL_Checks/hdlsrc');
checkhdl('sfir_fixed/symmetric_fir')

Starting HDL check.
Creating HDL Code Generation Check Report file://C:\HDL_Checks\hdlsrc\sfir_fixed\symmetric_fir_report.html
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.

checkhdl completed successfully, which means that the model is compatible for HDL
code generation. To generate code, use makehdl

makehdl('sfir_fixed/symmetric_fir')

 makehdl

2-91

Generating HDL for 'sfir_fixed/symmetric_fir'.
Using the config set for model sfir_fixed for HDL code generation parameters.
Starting HDL check.
Begin VHDL Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as C:\HDL_Checks\hdlsrc\sfir_fixed\symmetric_fir.vhd.
Creating HDL Code Generation Check Report file://C:\HDL_Checks\hdlsrc\sfir_fixed\symmetric_fir_report.html
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

The generated VHDL® code for the symmetric_fir subsystem is saved in hdlsrc
\sfir_fixed\symmetric_fir.vhd.

Close the model.

bdclose('sfir_fixed');

Input Arguments
dut — DUT model or subsystem name
character vector

Specified as subsystem name, top-level model name, or model reference name with full
hierarchical path.
Example: 'top_level_name'
Example: 'top_level_name/subsysA/subsysB/codegen_subsys_name'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'TargetLanguage','Verilog'

Target Options

HDLSubsystem — DUT Subsystem
character vector

2 Functions — Alphabetical List

2-92

Specify the Subsystem in your model to generate HDL code for. For more information, see
the Generate HDL for section in “Target”.

TargetLanguage — Target language
'VHDL' (default) | 'Verilog'

Specify whether to generate VHDL or Verilog code. For more information, see the
Language section in “Target”.

TargetDirectory — Output directory
'hdlsrc' (default) | character vector

Specify a path to write the generated files and HDL code into. For more information, see
the Folder section in “Target”.

SplitEntityArch — Split VHDL entity and architecture into separate files
'off' (default) | 'on'

For more information, see Split entity and architecture in “Split VHDL entity and
architecture”.

UseSingleLibrary — Generate VHDL code for model references into a single
library
'off' (default) | 'on'

For more information, see “Generate VHDL code for model references into a single
library”.

Code Generation Output Options

CodeGenerationOutput — Generation of HDL code and display of generated
model
'GenerateHDLCode' (default) | 'GenerateHDLCodeAndDisplayGeneratedModel' |
'DisplayGeneratedModelOnly'

Specify whether you want to generate HDL code, or only display the generated model, or
generate HDL code and display the generated model. For more information, see the
Generate HDL code section in “Code Generation Output”.

GenerateHDLCode — Generate HDL code
'on' (default) | 'off'

 makehdl

2-93

Specify whether to generate HDL code for the model. For more information, see the
Generate HDL code section in “Code Generation Output”.

GenerateValidationModel — Generate validation model
'off' (default) | 'on'

Specify whether to generate the validation model with HDL code. For more information,
see the Generate validation model section in “Code Generation Output”.

Code Generation Report Options

HDLCodingStandard — Specify HDL coding standard
character vector

Specify whether the generated HDL code must conform to the Industry coding standard
guidelines. For more information, see “Choose Coding Standard and Report Options”.

HDLCodingStandardCustomizations — Specify HDL coding standard
customization object
hdlcoder.CodingStandard object

Specify the coding standards customization object to use with the Industry coding
standard when generating HDL code. For more information, see
hdlcoder.CodingStandard.

Traceability — Generate report with mapping links between HDL and model
'off' (default) | 'on'

Specify whether to generate a traceability report that has hyperlinks for navigating from
code-to-model and from model-to-code. For more information, see “Generate traceability
report”.

ResourceReport — Resource utilization report generation
'off' (default) | 'on'

Specify whether to generate a resource utilization report that displays the number of
hardware resources that the generated HDL code uses. For more information, see
“Generate resource utilization report”.

OptimizationReport — Optimization report generation
'off' (default) | 'on'

2 Functions — Alphabetical List

2-94

Specify whether to generate an optimization report that displays the effect of
optimizations such as streaming, sharing, and distributed pipelining. For more
information, see “Generate optimization report”.

HDLGenerateWebview — Include model Web view
'on' (default) | 'off'

Specify whether to generate a web view of the model in the Code Generation report to
easily navigate between the code and model. For more information, see “Generate model
Web view”.

Speed and Area Optimization

BalanceDelays — Delay balancing
'on' (default) | 'off'

Specify whether to enable delay balancing on the model. For more information, see
“Balance delays”.

DistributedPipeliningPriority — Specify priority for distributed pipelining
algorithm
'NumericalIntegrity' (default) | 'Performance'

Specify whether to prioritize the distributed pipelining optimization for numerical
integrity or performance. For more information, see the Distributed pipelining priority
section in “Distributed Pipelining”.

HierarchicalDistPipelining — Hierarchical distributed pipelining
'off' (default) | 'on'

Specify whether to apply the hierarchical distributed pipelining optimization on the
model. For more information, see “Distributed Pipelining”.

PreserveDesignDelays — Prevent distributed pipelining from moving design
delays
'off' (default) | 'on'

Specify whether you want the code generator to distribute design delays in your model.
For more information, see “Preserve design delays”.

ClockRatePipelining — Insert pipeline registers at the clock rate instead of the
data rate for multi-cycle paths
'on' (default) | 'off'

 makehdl

2-95

Specify whether to insert pipeline registers at the clock rate or the data rate. For more
information, see “Clock Rate Pipelining”.

MinimizeClockEnables — Omit clock enable logic for single-rate designs
'off' (default) | 'on'

For more information, see “Minimize Clock Enables and Reset Signals”.

RAMMappingThreshold — Minimum RAM size for mapping to RAMs instead of
registers
256 (default) | positive integer

Specify, in bits, the minimum RAM size required for mapping to RAMs instead of
registers. For more information, see the RAM mapping threshold (bits) section in
“RAM Mapping”.

MapPipelineDelaysToRAM — Map pipeline registers in the generated HDL code
to RAM
'off' (default) | 'on'

Specify whether to map pipeline registers in the generated HDL code to block RAMs on
the FPGA. For more information, see the Map pipeline delays to RAM section in “RAM
Mapping”.

HighlightFeedbackLoops — Highlight feedback loops inhibiting delay balancing
and optimizations
'off' (default) | 'on'

Specify whether to highlight feedback loops in your design. For more information, see
“Diagnostics for Optimizations”.

Coding Style

UserComment — HDL file header comment
character vector

Specify comment lines in header of generated HDL and test bench files. For more
information, see “Comment in header”.

UseAggregatesForConst — Represent constant values with aggregates
'off' (default) | 'on'

2 Functions — Alphabetical List

2-96

For more information, see Represent constant values by aggregates in “RTL
Customizations for Constants and MATLAB Function Blocks”.

UseRisingEdge — Use VHDL rising_edge or falling_edge function to detect
clock transitions
'off' (default) | 'on'

For more information, see Use "rising_edge/falling_edge" style for registers in “RTL
Style”.

LoopUnrolling — Unroll VHDL FOR and GENERATE loops
'off' (default) | 'on'

For more information, see Loop unrolling in “RTL Style”.

UseVerilogTimescale — Generate 'timescale compiler directives
'on' (default) | 'off'

For more information, see Use Verilog 'timescale directives in “RTL Annotations”.

InlineConfigurations — Include VHDL configurations
'on' (default) | 'off'

For more information, see Inline VHDL configuration in “RTL Annotations”.

SafeZeroConcat — Type-safe syntax for concatenated zeros
'on' (default) | 'off'

For more information, see Concatenate type safe zeros in “RTL Annotations”.

DateComment — Include time stamp in header
'on' (default) | 'off'

For more information, see Emit time/date stamp in header in “RTL Annotations”.

ScalarizePorts — Flatten vector ports into scalar ports
'off' (default) | 'on'

For more information, see Scalarize vector ports in “RTL Style”.

MinimizeIntermediateSignals — Minimize intermediate signals
'off' (default) | 'on'

 makehdl

2-97

For more information, see Minimize intermediate signals in “RTL Style”.

RequirementComments — Link from code generation reports to requirement
documents
'on' (default) | 'off'

For more information, see Include requirements in block comments in “RTL
Annotations”.

InlineMATLABBlockCode — Inline HDL code for MATLAB Function blocks
'off' (default) | 'on'

For more information, see Inline MATLAB Function block code “RTL Customizations
for Constants and MATLAB Function Blocks”.

MaskParameterAsGeneric — Reusable code generation for subsystems with
identical mask parameters
'off' (default) | 'on'

For more information, see Generate parameterized HDL code from masked
subsystem in “RTL Style”.

InitializeBlockRAM — Initial signal value generation for RAM blocks
'on' (default) | 'off'

For more information, see Initialize all RAM blocks in “RTL Customizations for RAMs”.

RAMArchitecture — RAM architecture
'WithClockEnable' (default) | 'WithoutClockEnable'

For more information, see RAM Architecture in “RTL Customizations for RAMs”.

Clocks and Reset

ClockEdge — Active clock edge
'Rising' (default) | 'Falling'

Specify the active clock edge for the generated HDL code. For more information, see the
Clock edge section in “Clock Settings and Timing Controller Postfix”.

ClockInputs — Single or multiple clock inputs
'Single' (default) | 'Multiple'

2 Functions — Alphabetical List

2-98

Specify whether to generate single or multiple clock inputs in the HDL code. For more
information, see the Clock inputs section in “Clock Settings and Timing Controller
Postfix”.

Oversampling — Oversampling factor for global clock
1 (default) | integer greater than or equal to 0

Frequency of global oversampling clock, specified as an integer multiple of the model’s
base rate. For more information, see “Oversampling factor”.

ResetAssertedLevel — Asserted (active) level of reset
'active-high' (default) | 'active-low'

Specify whether to use an active-high or active-low asserted level for the reset input
signal. For more information, see the Reset asserted level section in “Reset Settings”.

ResetType — Reset type
'async' (default) | 'sync'

Specify whether to use synchronous or asynchronous reset in the generated HDL code.
For more information, see “Reset Settings”.

TriggerAsClock — Use trigger signal as clock in triggered subsystems
'off' (default) | 'on'

For more information, see “Use trigger signal as clock”.

TimingControllerArch — Generate reset for timing controller
'default' (default) | 'resettable'

For more information, see Timing controller architecture in “Timing Controller
Settings”.

Test Bench

GenerateCoSimBlock — Generate HDL Cosimulation block
'off' (default) | 'on'

When you use this property with makehdl, HDL Coder does not a Cosimulation block. To
generate a Cosimulation block, use makehdltb. With the Cosimulation block, you can
simulate the DUT in Simulink with an HDL simulator.

For more information, see GenerateCoSimBlock.

 makehdl

2-99

GenerateCoSimModel — Generate HDL Cosimulation Model
'ModelSim' (default) | 'Incisive' | 'None'

When you use this property with makehdl, HDL Coder does not a Cosimulation model. To
generate a Cosimulation model, use makehdltb. The model contains a Cosimulation
block for the HDL simulator that you specify.

For more information, see GenerateCoSimModel.

SimulatorFlags — Options for generated compilation scripts
character vector

For more information, see SimulatorFlags.

TestBenchReferencePostFix — Suffix for test bench reference signals
'_ref' (default) | character vector

For more information, see TestBenchReferencePostFix.

Script Generation

EDAScriptGeneration — Enable or disable script generation for third-party tools
'on' (default) | 'off'

For more information, see EDAScriptGeneration.

HDLCompileInit — Compilation script initialization text
'vlib %s\n' (default) | character vector

For more information, see HDLCompileInit.

HDLCompileTerm — Compilation script termination text
'' (default) | character vector

For more information, see HDLCompileTerm.

HDLCompileFilePostfix — Postfix for compilation script file name
'_compile.do' (default) | character vector

For more information, see HDLCompileFilePostfix.

HDLCompileVerilogCmd — Verilog compilation command
'vlog %s %s\n' (default) | character vector

2 Functions — Alphabetical List

2-100

Verilog compilation command, specified as a character vector. The SimulatorFlags
name-value pair specifies the first argument, and the module name specifies the second
argument.

For more information, see HDLCompileVerilogCmd.

HDLCompileVHDLCmd — VHDL compilation command
'vcom %s %s\n' (default) | character vector

VHDL compilation command, specified as a character vector. The SimulatorFlags
name-value pair specifies the first argument, and the entity name specifies the second
argument.

For more information, see HDLCompileVHDLCmd.

HDLLintTool — HDL lint tool
'None' (default) | 'AscentLint' | 'Leda' | 'SpyGlass' | 'Custom'

For more information, see HDLLintTool.

HDLLintInit — HDL lint initialization name
character vector

HDL lint initialization name, specified as a character vector. The default is derived from
the HDLLintTool name-value pair.

For more information, see HDLLintInit.

HDLLintCmd — HDL lint command
character vector

HDL lint command, specified as a character vector. The default is derived from the
HDLLintTool name-value pair.

For more information, see HDLLintCmd.

HDLLintTerm — HDL lint termination name
character vector

HDL lint termination, specified as a character vector. The default is derived from the
HDLLintTool name-value pair.

For more information, see HDLLintTerm.

 makehdl

2-101

HDLSynthTool — Synthesis tool
'None' (default) | 'ISE' | 'Libero' | 'Precision' | 'Quartus' | 'Synplify' |
'Vivado' | 'Custom'

For more information, see HDLSynthTool.

HDLSynthCmd — HDL synthesis command
character vector

HDL synthesis command, specified as a character vector. The default is derived from the
HDLSynthTool name-value pair.

For more information, see HDLSynthCmd.

HDLSynthFilePostfix — Postfix for synthesis script file name
character vector

HDL synthesis script file name postfix, specified as a character vector. The default is
derived from the HDLSynthTool name-value pair.

For more information, see HDLSynthFilePostfix.

HDLSynthInit — Synthesis script initialization name
character vector

Initialization for the HDL synthesis script, specified as a character vector. The default is
derived from the HDLSynthTool name-value pair.

For more information, see HDLSynthInit.

HDLSynthTerm — Synthesis script termination name
character vector

Termination name for the HDL synthesis script. The default is derived from the
HDLSynthTool name-value pair.

For more information, see HDLSynthTerm.

Generated Model

GeneratedModelNamePrefix — Prefix for generated model name
'gm_' (default) | character vector

2 Functions — Alphabetical List

2-102

For more information, see “Prefix for the generated model name”.

Synthesis

SynthesisTool — Synthesis tool
'' (default) | 'Altera Quartus II' | 'Xilinx ISE' | 'Xilinx Vivado'

Specify the synthesis tool for targeting the generated HDL code as a character vector. For
more information, see “Tool and Device”.

SynthesisToolChipFamily — Synthesis tool chip family
'' (default) | character vector

Specify the synthesis tool chip family for the target device as a character vector. For more
information, see the Family section in “Tool and Device”.

SynthesisToolDeviceName — Synthesis tool device name
'' (default) | character vector

Specify the synthesis tool device name for the target device as a character vector. For
more information, see the Device section in “Tool and Device”.

SynthesisToolPackageName — Synthesis tool package name
'' (default) | character vector

Specify the synthesis tool package name for the target device as a character vector. For
more information, see the Package section in “Tool and Device”.

SynthesisToolSpeedValue — Synthesis tool speed value
'' (default) | character vector

Specify the synthesis tool speed value for the target device as a character vector. For
more information, see the Speed section in “Tool and Device”.

SynthesisToolSpeedValue — Synthesis tool speed value
'' (default) | character vector

Specify the synthesis tool speed value for the target device as a character vector. For
more information, see the Speed section in “Tool and Device”.

TargetFrequency — Target frequency in MHz
'' (default) | character vector

 makehdl

2-103

Specify the target frequency in MHz as a character vector. For more information, see
“Target Frequency”.

MulticyclePathInfo — Multicycle path constraint file generation
'off' (default) | 'on'

Specify whether to generate a multicycle path constraints text file. For more information,
see “Multicycle Path Constraints”.

MulticyclePathConstraints — Enable-based multicycle path constraint file
generation
'off' (default) | 'on'

Specify whether to generate an enable-based multicycle path constraints file. For more
information, see Enable-based constraints in “Multicycle Path Constraints”.

Port Names and Types

ClockEnableInputPort — Clock enable input port name
'clk_enable' (default) | character vector

Specify the clock enable input port name as a character vector. For more information, see
“Clock Enable Settings”.

ClockEnableOutputPort — Clock enable output port name
'ce_out' (default) | character vector

Clock enable output port name, specified as a character vector.

For more information, see “Clock Enable output port”.

ClockInputPort — Clock input port name
'clk' (default) | character vector

Specify the clock input port name as a character vector. For more information, see “Clock
Settings and Timing Controller Postfix”.

InputType — HDL data type for input ports
'wire' or 'std_logic_vector' (default) | 'signed/unsigned'

VHDL inputs can have 'std_logic_vector' or 'signed/unsigned' data type.
Verilog inputs must be 'wire'.

2 Functions — Alphabetical List

2-104

For more information, see Input data type in “Input and Output Port Data Types”.

OutputType — HDL data type for output ports
'Same as input data type' (default) | 'std_logic_vector' | 'signed/
unsigned' | 'wire'

VHDL output can be 'Same as input data type', 'std_logic_vector' or
'signed/unsigned'. Verilog output must be 'wire'.

For more information, see Output data type in “Input and Output Port Data Types”.

ResetInputPort — Reset input port name
'reset' (default) | character vector

Reset input port name, specified as a character vector.

For more information, see the Reset input port section in “Reset Settings”.

File and Variable Names

VerilogFileExtension — Verilog file extension
'.v' (default) | character vector

Specify the file name extension for generated Verilog files. For more information, see
“Language-Specific Identifiers and File Extensions”.

VHDLFileExtension — VHDL file extension
'.vhd' (default) | character vector

Specify the file name extension for generated VHDL files. For more information, see the
VHDLFileExtension section in “Language-Specific Identifiers and File Extensions”.

VHDLArchitectureName — VHDL architecture name
'rtl' (default) | character vector

For more information, see VHDL architecture name in “VHDL Architecture and Library
Name”.

VHDLLibraryName — VHDL library name
'work' (default) | character vector

For more information, see VHDL library name in “VHDL Architecture and Library
Name”.

 makehdl

2-105

SplitEntityFilePostfix — Postfix for VHDL entity file names
'_entity' (default) | character vector

For more information, see Split entity file postfix in “Split VHDL entity and
architecture”.

SplitArchFilePostfix — Postfix for VHDL architecture file names
'_arch' (default) | character vector

For more information, see Split arch file postfix in “Split VHDL entity and architecture”.

PackagePostfix — Postfix for package file name
'_pkg' (default) | character vector

Specify the postfix for the package file name as a character vector. For more information,
see the Package Postfix section in “Language-Specific Identifiers and File Extensions”.

HDLMapFilePostfix — Postfix for mapping file
'_map.txt' (default) | character vector

For more information, see “Map file postfix”.

BlockGenerateLabel — Block label postfix for VHDL GENERATE statements
'_gen' (default) | character vector

For more information, see Block generate label in “Generate Statement Labels”.

ClockProcessPostfix — Postfix for clock process names
'_process' (default) | character vector

Specify the postfix for clocked process names as a character vector. For more information,
see the Clocked process postfix section in “Clock Settings and Timing Controller
Postfix”.

ComplexImagPostfix — Postfix for imaginary part of complex signal
'_im' (default) | character vector

For more information, see Complex imaginary part postfix in “Complex Signals
Postfix”.

ComplexRealPostfix — Postfix for imaginary part of complex signal names
'_re' (default) | character vector

2 Functions — Alphabetical List

2-106

For more information, see Complex real part postfix in “Complex Signals Postfix”.

EntityConflictPostfix — Postfix for duplicate VHDL entity or Verilog module
names
'_block' (default) | character vector

Specify the postfix as a character vector that resolves duplicate entity or module names.
For more information, see the Entity conflict postfix section in “Language-Specific
Identifiers and File Extensions”.

InstanceGenerateLabel — Instance section label postfix for VHDL GENERATE
statements
'_gen' (default) | character vector

For more information, see Instance generate label in “Generate Statement Labels”.

InstancePostfix — Postfix for generated component instance names
'' (default) | character vector

For more information, see Instance postfix in “Vector and Component Instances Labels”.

InstancePrefix — Prefix for generated component instance names
'u_' (default) | character vector

For more information, see Instance prefix in “Vector and Component Instances Labels”..

OutputGenerateLabel — Output assignment label postfix for VHDL GENERATE
statements
'outputgen' (default) | character vector

For more information, see Output generate label in “Generate Statement Labels”.

PipelinePostfix — Postfix for input and output pipeline register names
'_pipe' (default) | character vector

For more information, see “Pipeline postfix”.

ReservedWordPostfix — Postfix for names conflicting with VHDL or Verilog
reserved words
'_rsvd' (default) | character vector

For more information, see Reserved word postfix in “Language-Specific Identifiers and
File Extensions”.

 makehdl

2-107

TimingControllerPostfix — Postfix for timing controller name
'_tc' (default) | character vector

For more information, see Timing controller postfix in “Clock Settings and Timing
Controller Postfix”.

VectorPrefix — Prefix for vector names
'vector_of_' (default) | character vector

For more information, see Vector prefix in “Vector and Component Instances Labels”.

EnablePrefix — Prefix for internal enable signals
'enb' (default) | character vector

Prefix for internal clock enable and control flow enable signals, specified as a character
vector. For more information, see “Clock Enable Settings”.

ModulePrefix — Prefix for modules or entity names
'' (default) | character vector

Specify a prefix for every module or entity name in the generated HDL code. HDL Coder
also applies this prefix to generated script file names

For more information, see ModulePrefix in “Language-Specific Identifiers and File
Extensions”.

See Also
checkhdl | makehdltb

Introduced in R2006b

2 Functions — Alphabetical List

2-108

makehdltb
Generate HDL test bench from model or subsystem

Syntax
makehdltb(dut)
makehdltb(dut,Name,Value)

Description
makehdltb(dut) generates an HDL test bench from the specified subsystem or model
reference.

Note If you have not previously executed makehdl within the current MATLAB session,
makehdltb calls makehdl to generate model code before generating the test bench code.
Properties passed in to makehdl persist after makehdl executes, and (unless explicitly
overridden) are passed to subsequent makehdl calls during the same MATLAB session.

makehdltb(dut,Name,Value) generates an HDL test bench from the specified
subsystem or model reference with options specified by one or more name-value pair
arguments.

Examples

Generate VHDL Test Bench

Generate VHDL DUT and test bench for a subsystem.

Use makehdl to generate VHDL code for the subsystem symmetric_fir.

makehdl('sfir_fixed/symmetric_fir')

 makehdltb

2-109

Generating HDL for 'sfir_fixed/symmetric_fir'.
Starting HDL check.
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings,
 and 0 messages.
Begin VHDL Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as
 hdlsrc\sfir_fixed\symmetric_fir.vhd
HDL code generation complete.

After makehdl is complete, use makehdltb to generate a VHDL test bench for the same
subsystem.

makehdltb('sfir_fixed/symmetric_fir')

Begin TestBench generation.
Generating HDL TestBench for 'sfir_fixed/symmetric_fir'.
Begin simulation of the model 'gm_sfir_fixed'...
Collecting data...
Generating test bench: hdlsrc\sfir_fixed\symmetric_fir_tb.vhd
Creating stimulus vectors...
HDL TestBench generation complete.

The generated VHDL test bench code is saved in the hdlsrc folder.

Generate Verilog Test Bench

Generate Verilog DUT and test bench for a subsystem.

Use makehdl to generate Verilog code for the subsystem symmetric_fir.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','Verilog')

Generating HDL for 'sfir_fixed/symmetric_fir'.
Starting HDL check.
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings,
 and 0 messages.
Begin Verilog Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as
 hdlsrc\sfir_fixed\symmetric_fir.v
HDL code generation complete.

After makehdl is complete, use makehdltb to generate a Verilog test bench for the same
subsystem.

2 Functions — Alphabetical List

2-110

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','Verilog')

Begin TestBench generation.
Generating HDL TestBench for 'sfir_fixed/symmetric_fir'.
Begin simulation of the model 'gm_sfir_fixed'...
Collecting data...
Generating test bench: hdlsrc\sfir_fixed\symmetric_fir_tb.v
Creating stimulus vectors...
HDL TestBench generation complete.

The generated Verilog test bench code is saved in the hdlsrc\sfir_fixed folder.

Generate a SystemVerilog DPI Test Bench

Generate SystemVerilog DPI test bench for a subsystem.

Consider this option if generation or simulation of the default HDL test bench takes a long
time. Generation of a DPI test bench can be faster than the default version because it
does not run a Simulink simulation to create the test bench data. Simulation of a DPI test
bench with a large data set is faster than the default version because it does not store the
input or expected data in a separate file. For requirements to use this feature, see the
GenerateSVDPITestBench property.

Use makehdl to generate Verilog code for the subsystem symmetric_fir.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','Verilog')

Generating HDL for 'sfir_fixed/symmetric_fir'.
Starting HDL check.
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings,
 and 0 messages.
Begin Verilog Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as
 hdlsrc\sfir_fixed\symmetric_fir.v
HDL code generation complete.

After the code is generated, use makehdltb to generate a test bench for the same
subsystem. Specify your HDL simulator so that the coder can generate scripts to build
and run the generated SystemVerilog and C code. Disable generation of the default test
bench.

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','Verilog',...
 'GenerateSVDPITestBench','ModelSim','GenerateHDLTestBench','off')

 makehdltb

2-111

Start checking model compatibility with SystemVerilog DPI testbench
Finished checking model compatibility with SystemVerilog DPI testbench
Preparing generated model for SystemVerilog DPI component generation
Generating SystemVerilog DPI component
Starting build procedure for model: gm_sfir_fixed_ref
Starting SystemVerilog DPI Component Generation
Generating DPI H Wrapper gm_sfir_fixed_ref_dpi.h
Generating DPI C Wrapper gm_sfir_fixed_ref_dpi.c
Generating SystemVerilog module gm_sfir_fixed_ref_dpi.sv using template C:\matlab\toolbox\hdlverifier\dpigenerator\rtw\hdlverifier_dpitb_template.vgt
Generating makefiles for: gm_sfir_fixed_ref_dpi
Invoking make to build the DPI Shared Library
Successful completion of build procedure for model: gm_sfir_fixed_ref
Working on symmetric_fir_dpi_tb as hdlsrc\sfir_fixed\symmetric_fir_dpi_tb.sv.
Generating SystemVerilog DPI testbench simulation script for ModelSim/QuestaSim hdlsrc\sfir_fixed\symmetric_fir_dpi_tb.do

HDL TestBench generation complete.

The generated SystemVerilog and C test bench files, and the build scripts, are saved in
the hdlsrc\sfir_fixed folder.

Input Arguments
dut — DUT subsystem or model reference name
character vector

DUT subsystem or model reference name, specified as a character vector, with full
hierarchical path.
Example: 'modelname/subsysTarget'
Example: 'modelname/subsysA/subsysB/subsysTarget'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'TargetLanguage','Verilog'

2 Functions — Alphabetical List

2-112

Basic Options

TargetLanguage — Target language
'VHDL' (default) | 'Verilog'

Specify whether to generate VHDL or Verilog code. For more information, see the
Language section in “Target”.

TargetDirectory — Output directory
'hdlsrc' (default) | character vector

Specify a path to write the generated files and HDL code into. For more information, see
the Folder section in “Target”.

SplitEntityArch — Split VHDL entity and architecture into separate files
'off' (default) | 'on'

For more information, see Split entity and architecture in “Split VHDL entity and
architecture”.

Test Bench Generation

GenerateHDLTestBench — Generate HDL test bench
'on' (default) | 'off'

The coder generates an HDL test bench by running a Simulink simulation to capture input
vectors and expected output data for your DUT. For more information, see HDL test
bench“Test Bench Generation Output”.

GenerateSVDPITestBench — Generate SystemVerilog DPI test bench
'none' (default) | 'ModelSim' | 'Incisive' | 'VCS' | 'Vivado Simulator'

When you set this property, the coder generates a direct programming interface (DPI)
component for your entire Simulink model, including your DUT and data sources. Your
entire model must support C code generation with Simulink Coder™. The coder generates
a SystemVerilog test bench that compares the output of the DPI component with the
output of the HDL implementation of your DUT. The coder also builds shared libraries and
generates a simulation script for the simulator you select.

Consider using this option if the default HDL test bench takes a long time to generate or
simulate. Generation of a DPI test bench is sometimes faster than the default version
because it does not run a full Simulink simulation to create the test bench data.

 makehdltb

2-113

Simulation of a DPI test bench with a large data set is faster than the default version
because it does not store the input or expected data in a separate file. For an example,
see “Generate a SystemVerilog DPI Test Bench” on page 2-111.

To use this feature, you must have HDL Verifier™ and Simulink Coder licenses. To run the
SystemVerilog testbench with generated VHDL code, you must have a mixed-language
simulation license for your HDL simulator.

Limitations This test bench is not supported when you generate HDL code for the top-
level Simulink model. Your DUT subsystem must meet the following conditions:

• Input and output data types of the DUT cannot be larger than 64 bits.
• Input and output ports of the DUT cannot use enumerated data types.
• Input and output ports cannot be single-precision or double-precision data types.
• The DUT cannot have multiple clocks. You must set the Clock inputs code generation

option to Single.
• Use trigger signal as clock must not be selected.
• If the DUT uses vector ports, you must use Scalarize vector ports to flatten the

interface.

GenerateCoSimBlock — Generate HDL Cosimulation block
'off' (default) | 'on'

Generate an HDL Cosimulation block so you can simulate the DUT in Simulink with an
HDL simulator.

For more information, see GenerateCoSimBlock.

GenerateCoSimModel — Generate HDL Cosimulation model
'ModelSim' (default) | 'Incisive' | 'None'

Generate a model containing an HDL Cosimulation block for the specified HDL simulator.

For more information, see GenerateCoSimModel.

HDLCodeCoverage — Enable code coverage on the generated test bench
'off' (default) | 'on'

2 Functions — Alphabetical List

2-114

Include code coverage switches in the generated build-and-run scripts. These switches
turn on code coverage for the generated test bench. Specify your HDL simulator in the
SimulationTool property. The coder generates build-and-run scripts for the simulator
you specify.

SimulationTool — HDL simulator where you will run the generated test bench
'ModelSim' (default) | 'Incisive' | 'VCS' | 'Vivado' | 'Custom'

This property applies to generated test benches. 'VCS' and 'Vivado' are supported
only for SystemVerilog DPI test benches. When you select 'Custom', the tool uses the
custom script settings. See the “Script Generation” properties.

Test Bench Configuration

ForceClock — Force clock input
'on' (default) | 'off'

Specify that the generated test bench drives the clock enable input based on
ClockLowTime and ClockHighTime.

For more information, see ForceClock.

ClockHighTime — Clock high time
5 (default) | positive integer

Clock high time during a clock period, specified in nanoseconds.

For more information, see ClockHighTime.

ClockLowTime — Clock low time
5 (default) | positive integer

Clock low time during a clock period, specified in nanoseconds.

For more information, see ClockLowTime.

ForceClockEnable — Force clock enable input
'on' (default) | 'off'

Specify that the generated test bench drives the clock enable input.

For more information, see ForceClockEnable.

 makehdltb

2-115

ClockInputs — Single or multiple clock inputs
'Single' (default) | 'Multiple'

Specify whether to generate single or multiple clock inputs in the HDL code. For more
information, see the Clock inputs section in “Clock Settings and Timing Controller
Postfix”.

ForceReset — Force reset input
'on' (default) | 'off'

Specify that the generated test bench drives the reset input.

For more information, see ForceReset.

ResetLength — Reset asserted time length
2 (default) | integer greater than or equal to 0

Length of time that reset is asserted, specified as the number of clock cycles.

For more information, see ResetLength.

ResetAssertedLevel — Asserted (active) level of reset
'active-high' (default) | 'active-low'

Specify whether to use an active-high or active-low asserted level for the reset input
signal. For more information, see the Reset asserted level section in “Reset Settings”.

HoldInputDataBetweenSamples — Hold valid data for signals clocked at slower
rate
'on' (default) | 'off'

For more information, see HoldInputDataBetweenSamples.

HoldTime — Hold time for inputs and forced reset
2 (default) | positive integer

Hold time for inputs and forced reset, specified in nanoseconds.

For more information, see HoldTime.

IgnoreDataChecking — Time to wait after clock enable before checking output
data
0 (default) | positive integer

2 Functions — Alphabetical List

2-116

Time after clock enable is asserted before starting output data checks, specified in
number of samples.

For more information, see IgnoreDataChecking.

InitializeTestBenchInputs — Initialize test bench inputs to 0
'off' (default) | 'on'

For more information, see InitializeTestBenchInputs.

MultifileTestBench — Divide generated test bench into helper functions, data,
and HDL test bench files
'off' (default) | 'on'

For more information, see MultifileTestBench.

UseFileIOInTestBench — Use file I/O to read/write test bench data
'on' (default) | 'off'

For more information, see UseFileIOInTestBench.

TestBenchClockEnableDelay — Number of clock cycles between deassertion of
reset and assertion of clock enable
1 (default) | positive integer

For more information, see TestBenchClockEnableDelay.

TestBenchDataPostFix — Postfix for test bench data file name
'_data' (default) | character vector

For more information, see TestBenchDataPostFix.

TestBenchPostFix — Suffix for test bench name
'_tb' (default) | character vector

For more information, see TestBenchPostFix.

Coding Style

UseVerilogTimescale — Generate 'timescale compiler directives
'on' (default) | 'off'

For more information, see Use Verilog 'timescale directives in “RTL Annotations”.

 makehdltb

2-117

DateComment — Include time stamp in header
'on' (default) | 'off'

For more information, see Emit time/date stamp in header in “RTL Annotations”.

InlineConfigurations — Include VHDL configurations
'on' (default) | 'off'

For more information, see Inline VHDL configuration in “RTL Annotations”.

ScalarizePorts — Flatten vector ports into scalar ports
'off' (default) | 'on'

For more information, see Scalarize vector ports in “RTL Style”.

Script Generation

HDLCompileInit — Compilation script initialization text
'vlib %s\n' (default) | character vector

For more information, see HDLCompileInit.

HDLCompileTerm — Compilation script termination text
'' (default) | character vector

For more information, see HDLCompileTerm.

HDLCompileFilePostfix — Postfix for compilation script file name
'_compile.do' (default) | character vector

For more information, see HDLCompileFilePostfix.

HDLCompileVerilogCmd — Verilog compilation command
'vlog %s %s\n' (default) | character vector

Verilog compilation command, specified as a character vector. The SimulatorFlags
name-value pair specifies the first argument, and the module name specifies the second
argument.

For more information, see HDLCompileVerilogCmd.

HDLCompileVHDLCmd — VHDL compilation command
'vcom %s %s\n' (default) | character vector

2 Functions — Alphabetical List

2-118

VHDL compilation command, specified as a character vector. The SimulatorFlags
name-value pair specifies the first argument, and the entity name specifies the second
argument.

For more information, see HDLCompileVHDLCmd.

HDLSimCmd — HDL simulation command
'vsim -novopt %s.%s\n' (default) | character vector

The HDL simulation command, specified as a character vector.

For more information, see HDLSimCmd.

HDLSimInit — HDL simulation script initialization name
['onbreak resume\n', 'onerror resume\n'] (default) | character vector

Initialization for the HDL simulation script, specified as a character vector.

For more information, see HDLSimInit.

HDLSimTerm — HDL simulation script termination name
'run -all' (default) | character vector

The termination name for the HDL simulation command, specified as a character vector.

For more information, see HDLSimTerm.

HDLSimFilePostfix — Postscript for HDL simulation script
'_sim.do' (default) | character vector

For more information, see HDLSimFilePostfix.

HDLSimViewWaveCmd — HDL simulation waveform viewing command
'add wave sim:%s\n' (default) | character vector

Waveform viewing command, specified as a character vector. The implicit argument adds
the signal paths for the DUT top-level input, output, and output reference signals.

For more information, see HDLSimViewWaveCmd.

Port Names and Types

ClockEnableInputPort — Clock enable input port name
'clk_enable' (default) | character vector

 makehdltb

2-119

Specify the clock enable input port name as a character vector. For more information, see
“Clock Enable Settings”.

ClockEnableOutputPort — Clock enable output port name
'ce_out' (default) | character vector

Clock enable output port name, specified as a character vector.

For more information, see “Clock Enable output port”.

ClockInputPort — Clock input port name
'clk' (default) | character vector

Specify the clock input port name as a character vector. For more information, see “Clock
Settings and Timing Controller Postfix”.

ResetInputPort — Reset input port name
'reset' (default) | character vector

Reset input port name, specified as a character vector.

For more information, see the Reset input port section in “Reset Settings”.

File and Variable Names

VerilogFileExtension — Verilog file extension
'.v' (default) | character vector

Specify the file name extension for generated Verilog files. For more information, see
“Language-Specific Identifiers and File Extensions”.

VHDLFileExtension — VHDL file extension
'.vhd' (default) | character vector

Specify the file name extension for generated VHDL files. For more information, see the
VHDLFileExtension section in “Language-Specific Identifiers and File Extensions”.

VHDLArchitectureName — VHDL architecture name
'rtl' (default) | character vector

For more information, see VHDL architecture name in “VHDL Architecture and Library
Name”.

2 Functions — Alphabetical List

2-120

VHDLLibraryName — VHDL library name
'work' (default) | character vector

For more information, see VHDL library name in “VHDL Architecture and Library
Name”.

SplitEntityFilePostfix — Postfix for VHDL entity file names
'_entity' (default) | character vector

For more information, see Split entity file postfix in “Split VHDL entity and
architecture”.

SplitArchFilePostfix — Postfix for VHDL architecture file names
'_arch' (default) | character vector

For more information, see Split arch file postfix in “Split VHDL entity and architecture”.

PackagePostfix — Postfix for package file name
'_pkg' (default) | character vector

Specify the postfix for the package file name as a character vector. For more information,
see the Package Postfix section in “Language-Specific Identifiers and File Extensions”.

ComplexImagPostfix — Postfix for imaginary part of complex signal
'_im' (default) | character vector

For more information, see Complex imaginary part postfix in “Complex Signals
Postfix”.

ComplexRealPostfix — Postfix for imaginary part of complex signal names
'_re' (default) | character vector

For more information, see Complex real part postfix in “Complex Signals Postfix”.

EnablePrefix — Prefix for internal enable signals
'enb' (default) | character vector

Prefix for internal clock enable and control flow enable signals, specified as a character
vector. For more information, see “Clock Enable Settings”.

 makehdltb

2-121

See Also
makehdl

Introduced in R2006b

2 Functions — Alphabetical List

2-122

sschdladvisor
Open Simscape HDL Workflow Advisor

Syntax
sschdladvisor(subsystem)
sschdladvisor(model)

Description
sschdladvisor(subsystem) opens the Simscape HDL Workflow Advisor for the
subsystem within the model.

sschdladvisor(model) opens the Simscape HDL Workflow Advisor for the model.

Examples

Open Simscape HDL Workflow Advisor

This example shows how to open advisor for the model and a subsystem inside a model.

Open Simscape HDL Advisor for a Model

For example: To open the advisor for the Boost Converter model, enter:

Modelname = 'sschdlexBoostConverterExample';
open_system(Modelname)
sschdladvisor(Modelname)

 sschdladvisor

2-123

Open Simscape HDL Advisor for a Subsystem

For example: To open the advisor for the Simscape_system block inside the Buck
Converter model, enter:

Modelname = 'sschdlexBuckConverterExample';
Subsysname = 'sschdlexBuckConverterExample/Simscape_system';
load_system(Modelname)
open_system(Subsysname)
sschdladvisor(Subsysname)

2 Functions — Alphabetical List

2-124

Input Arguments
subsystem — Subsystem name
character vector

Subsystem name or handle, specified as a character vector.
Data Types: char

model — Model name
character vector

Model name or handle, specified as a character vector.
Data Types: char

See Also
simscape.findNonlinearBlocks

Topics
“Generate HDL Code from Simscape Models”

 sschdladvisor

2-125

Introduced in R2018b

2 Functions — Alphabetical List

2-126

Supported Blocks

3

1-D Lookup Table
Approximate one-dimensional function (HDL Coder)

Description
The 1-D Lookup Table block is a one-dimensional version of the n-D Lookup Table block.
For HDL code generation information, see n-D Lookup Table.

Introduced in R2014a

3 Supported Blocks

3-2

2-D Lookup Table
Approximate two-dimensional function (HDL Coder)

Description
The 2-D Lookup Table block is a two-dimensional version of the n-D Lookup Table block.
For HDL code generation information, see n-D Lookup Table.

Introduced in R2014a

 2-D Lookup Table

3-3

Abs
Output absolute value of input (HDL Coder)

Description
The Abs block is available with Simulink.

For information about the simulation behavior and block parameters, see Abs.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-4

Complex Data Support
This block does not support code generation for complex signals. To calculate the
magnitude of a complex number, use the Complex to Magnitude-Angle HDL Optimized
block instead.

Introduced in R2014a

 Abs

3-5

Add
Add inputs (HDL Coder)

Description
The Add block is available with Simulink.

For information about the simulation behavior and block parameters, see Add.

HDL Architecture
The default Linear architecture generates a chain of N operations (adders) for N inputs.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-6

Native Floating Point
LatencyStrategy

Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

Complex Data Support
The default Linear implementation supports complex data.

Introduced in R2014a

 Add

3-7

Assertion
Check whether signal is zero (HDL Coder)

Description
The Assertion block is available with Simulink.

For information about the simulation behavior and block parameters, see Assertion.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-8

Assignment
Assign values to specified elements of signal (HDL Coder)

Description
The Assignment block is available with Simulink.

For information about the simulation behavior and block parameters, see Assignment.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

 Assignment

3-9

Introduced in R2014a

3 Supported Blocks

3-10

Atomic Subsystem
Represent system within another system (HDL Coder)

Description
The Atomic Subsystem block is available with Simulink.

For information about the simulation behavior and block parameters, see Atomic
Subsystem.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

 Atomic Subsystem

3-11

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-12

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
If this block is not the DUT, the block property settings in the Target Specification tab
are ignored.

In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target
specification block property values are saved with the model. If you specify these target
specification block property values using hdlset_param, when you open HDL Workflow
Advisor, the fields are populated with the corresponding values.

ProcessorFPGASynchronization
Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core Generation
workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
TestPointMapping

To save this block property on the model, specify the mapping of test point ports to
target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'

 Atomic Subsystem

3-13

TunableParameterMapping
To save this block property on the model, specify the mapping of tunable parameter
ports to target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
IPCoreAdditionalFiles

Verilog or VHDL files for black boxes in your design. Specify the full path to each file,
and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional source
files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName
IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core name field. If
this property is set to the default value, the HDL Workflow Advisor constructs the IP
core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion

IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core version field. If
this property is set to the default value, the HDL Workflow Advisor sets the IP core
version.

Values: '' (default) | character vector

Example: '1.3'

3 Supported Blocks

3-14

Restrictions
If your DUT is a masked subsystem, you can generate code only if it is at the top level of
the model.

See Also

Topics
“External Component Interfaces”
“Generate Black Box Interface for Subsystem”

Introduced in R2014a

 Atomic Subsystem

3-15

Backlash
Model behavior of system with play (HDL Coder)

Description
The Backlash block is available with Simulink.

For information about the simulation behavior and block parameters, see Backlash.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
The Deadband width and Initial output parameters support only scalar values.

3 Supported Blocks

3-16

Introduced in R2014b

 Backlash

3-17

Bias
Add bias to input (HDL Coder)

Description
The Bias block is available with Simulink.

For information about the simulation behavior and block parameters, see Bias.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-18

Bilateral Filter
2-D bilateral filtering (HDL Coder)

Description
The Bilateral Filter block is available with Vision HDL Toolbox™.

For information about the simulation behavior and block parameters, see Bilateral Filter.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2017b

 Bilateral Filter

3-19

Biquad Filter
Model biquadratic IIR (SOS) filters (HDL Coder)

Description
The Biquad Filter block is available with DSP System Toolbox™.

For information about the simulation behavior and block parameters, see Biquad Filter.

Programmable Filter Support
HDL Coder supports programmable filters for Biquad Filter blocks.

1 On the filter block mask, set Coefficient source to Input port(s).
2 Connect vector signals to the Num and Den coefficient ports.

The following limitations apply to the HDL optimizations for a programmable Biquad
Filter block:

• Fully serial and partly serial architectures are not supported. Architecture must be
set to Fully parallel.

• Canonical signed digit (CSD) multiplier optimization is not supported.
CoeffMultipliers must be set to multiplier.

Multichannel Filter Support
HDL Coder supports the use of vector inputs to Biquad Filter blocks.

1 Connect a vector signal to the Biquad Filter block input port.
2 Specify Input processing as Elements as channels (sample based).
3 To reduce area by sharing the filter kernel between channels, set the

StreamingFactor parameter of the subsystem to the number of channels. See the
Streaming section of “Subsystem Optimizations for Filters”.

3 Supported Blocks

3-20

HDL Architecture

Block Optimizations

To use block-level optimizations to reduce hardware resources, select a serial
Architecture. Then set either NumMultipliers or Folding Factor. See “HDL Filter
Properties” on page 3-21.

When you select a serial architecture, set Filter structure to Direct form I or
Direct form II. The direct form transposed structures are not supported with serial
architectures.

When you use AddPipelineRegisters, registers are placed based on the filter structure.
The pipeline register placement determines the latency.

Filter Structure Pipeline Register
Placement

Latency (Clock Cycles)

Any Pipeline registers are added
between the filter sections.

NS-1, where NS is number
of sections.

Subsystem Optimizations
This block can participate in subsystem-level optimizations such as sharing, streaming,
and pipelining. For the block to participate in subsystem-level optimizations, set
Architecture to Fully parallel. See “Subsystem Optimizations for Filters”.

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area by
replacing coefficient multipliers with shift-and-add logic. When you choose a fully
parallel filter implementation, you can set CoeffMultipliers to csd or factored-

 Biquad Filter

3-21

csd. The default is multipliers, which retains multipliers in the HDL. See also
CoeffMultipliers.

FoldingFactor
Specify a serial implementation of an IIR SOS filter by the number of cycles it takes to
generate the result. See also FoldingFactor.

NumMultipliers
Specify a serial implementation of an IIR SOS filter by the number of hardware
multipliers that are generated. See also NumMultipliers.

For HDL filter property descriptions, see “HDL Filter Block Properties”.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• Frame input is not supported for HDL code generation.
• You must set Initial conditions to 0. HDL code generation is not supported for

nonzero initial states.
• You must select Optimize unity scale values.
• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

3 Supported Blocks

3-22

Introduced in R2014a

 Biquad Filter

3-23

Birds-Eye View
Transform front-facing camera image into top-down view (HDL Coder)

Description
The Birds-Eye View block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Birds-Eye View.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2017b

3 Supported Blocks

3-24

Bit Clear
Set specified bit of stored integer to zero (HDL Coder)

Description
The Bit Clear block is available with Simulink.

For information about the simulation behavior and block parameters, see Bit Clear.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Bit Clear

3-25

Bit Concat
Concatenates up to 128 input words into single output (HDL Coder)

Description
The Bit Concat block is available with Simulink.

For information about the simulation behavior and block parameters, see Bit Concat.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-26

Bit Reduce
AND, OR, or XOR bit reduction of all input signal bits to single bit (HDL Coder)

Description
The Bit Reduce block is available with Simulink.

For information about the simulation behavior and block parameters, see Bit Reduce.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Bit Reduce

3-27

Bit Rotate
Rotate input signal by bit positions (HDL Coder)

Description
The Bit Rotate block is available with Simulink.

For information about the simulation behavior and block parameters, see Bit Rotate.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-28

Bit Set
Set specified bit of stored integer to one (HDL Coder)

Description
The Bit Set block is available with Simulink.

For information about the simulation behavior and block parameters, see Bit Set.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Bit Set

3-29

Bit Shift
Logical or arithmetic shift of input signal (HDL Coder)

Description
The Bit Shift block is available with Simulink.

For information about the simulation behavior and block parameters, see Bit Shift.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-30

Bit Slice
Return field of consecutive bits from input signal (HDL Coder)

Description
The Bit Slice block is available with Simulink.

For information about the simulation behavior and block parameters, see Bit Slice.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Bit Slice

3-31

Bitwise Operator
Specified bitwise operation on inputs (HDL Coder)

Description
The Bitwise Operator block is available with Simulink.

For information about the simulation behavior and block parameters, see Bitwise
Operator.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-32

BPSK Demodulator Baseband
Demodulate BPSK-modulated data (HDL Coder)

Description
The BPSK Demodulator Baseband block is available with Communications Toolbox™.

For information about the simulation behavior and block parameters, see BPSK
Demodulator Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 BPSK Demodulator Baseband

3-33

BPSK Modulator Baseband
Modulate using binary phase shift keying method (HDL Coder)

Description
The BPSK Modulator Baseband block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see BPSK Modulator
Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-34

Bus Assignment
Replace specified bus elements (HDL Coder)

Description
The Bus Assignment block is available with Simulink.

For information about the simulation behavior and block parameters, see Bus Assignment.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Bus Assignment

3-35

See Also

Topics
“Buses”

Introduced in R2014b

3 Supported Blocks

3-36

Bus Creator
Create signal bus (HDL Coder)

Description
The Bus Creator block is available with Simulink.

For information about the simulation behavior and block parameters, see Bus Creator.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Bus Creator

3-37

Restrictions

Setup
For Output data type, specify a bus object.

3 Supported Blocks

3-38

 Bus Creator

3-39

See Also

Topics
“Buses”

Introduced in R2014a

3 Supported Blocks

3-40

Bus Selector
Select signals from incoming bus (HDL Coder)

Description
The Bus Selector block is available with Simulink.

For information about the simulation behavior and block parameters, see Bus Selector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
Inputs must be bus signals. Non-bus inputs are not supported for code generation.

 Bus Selector

3-41

See Also

Topics
“Buses”

Introduced in R2014a

3 Supported Blocks

3-42

Bus to Vector
Convert virtual bus to vector (HDL Coder)

Description
The Bus to Vector block is available with Simulink.

For information about the simulation behavior and block parameters, see Bus to Vector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Bus to Vector

3-43

See Also

Topics
“Buses”

Introduced in R2016a

3 Supported Blocks

3-44

Channelizer HDL Optimized
Polyphase filter bank and fast Fourier transform—optimized for HDL code generation
(HDL Coder)

Description
The Channelizer HDL Optimized block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Channelizer
HDL Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2017a

 Channelizer HDL Optimized

3-45

Chart
Implement control logic with finite state machine (HDL Coder)

Description
The Chart block is available with Stateflow®.

For information about the simulation behavior and block parameters, see Chart.

Tunable Parameters
You can use a tunable parameter in a Stateflow Chart intended for HDL code generation.

For more information, see “Generate DUT Ports for Tunable Parameters”.

HDL Architecture
This block has a single, default HDL architecture.

Active State Output
To generate an output port in the HDL code that shows the active state, select Create
output port for monitoring in the Properties window of the chart. The output is an
enumerated data type. See “Simplify Stateflow Charts by Incorporating Active State
Output” (Stateflow).

Registered Output
If you want to insert an output register that delays the chart output by a simulation cycle,
use the OutputPipeline block property.

3 Supported Blocks

3-46

HDL Block Properties
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

 Chart

3-47

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or variables.
Specify the list of variables as a character vector, with spaces separating the
variables.

Complex Data Support
This block supports code generation for complex signals.

Restrictions
• “Location of Charts in the Model” on page 3-49
• “Data Types” on page 3-49
• “Chart Initialization” on page 3-49
• “Imported Code” on page 3-50
• “Messages” on page 3-50
• “Input and Output Events” on page 3-50
• “Loops” on page 3-51
• “Other Restrictions” on page 3-51

3 Supported Blocks

3-48

Location of Charts in the Model
A chart intended for HDL code generation must be part of a Simulink subsystem. If the
chart for which you want to generate code is at the root level of your model, embed the
chart in a subsystem. Connect the relevant signals to the subsystem inputs and outputs.

Data Types
The current release supports a subset of MATLAB data types in charts intended for use in
HDL code generation. Supported data types are

• Signed and unsigned integer
• Double and single

Note Some results obtained from HDL code generated for models using double or
single data types are not bit-true to results from simulation of the original model.

• Fixed point
• Boolean
• Enumeration

Note Except for data types assigned to ports, multidimensional arrays of these types are
supported. Port data types must be either scalar or vector.

Chart Initialization
You must enable the chart property Execute (enter) Chart at Initialization. This option
executes the update chart function immediately following chart initialization. The option
is required for HDL because outputs must be available at time 0 (hardware reset).
“Execution of a Chart at Initialization” (Stateflow) describes existing restrictions under
this property.

The reset action must not entail the delay of combinatorial logic. Therefore, do not
perform arithmetic in initialization actions.

To generate HDL code that is more readable and has better synthesis results, enable the
Initialize Outputs Every Time Chart Wakes Up chart property. If you use a Moore
state machine, HDL Coder generates an error if you disable the chart property.

 Chart

3-49

If you disable Initialize Outputs Every Time Chart Wakes Up, the chart output is
persistent, so the generated HDL code must internally register the output values.

Imported Code
A chart intended for HDL code generation must be entirely self-contained. The following
restrictions apply:

• Do not call MATLAB functions other than min or max.
• Do not use MATLAB workspace data.
• Do not call C math functions. HDL does not have a counterpart to the C math library.
• If the Enable bit operations property is disabled, do not use the exponentiation

operator (^). The exponentiation operator is implemented with the C Math Library
function pow.

• Do not include custom code. Information entered on the Simulation Target >
Custom Code pane in the Configuration Parameters dialog box is ignored.

• Do not share data (via Data Store Memory blocks) between charts. HDL Coder does
not map such global data to HDL because HDL does not support global data.

Messages
Stateflow messages are not supported for HDL code generation.

Input and Output Events
HDL Coder supports the use of input and output events with Stateflow charts, subject to
the following constraints:

• You can define and use only one input event per Stateflow chart. (There is no
restriction on the number of output events that you can use.)

• The coder does not support HDL code generation for charts that have a single input
event, and which also have nonzero initial values on the chart's output ports.

• All input and output events must be edge-triggered.

For detailed information on input and output events, see “Activate a Stateflow Chart by
Sending Input Events” (Stateflow) and “Activate a Simulink Block by Sending Output
Events” (Stateflow).

3 Supported Blocks

3-50

Loops
Other than for loops, do not explicitly use loops in a chart intended for HDL code
generation. Observe the following restrictions on for loops:

• The data type of the loop counter variable must be int32.
• HDL Coder supports only constant-bounded loops.

The for loop example, sf_for, shows a design pattern for a for loop using a graphical
function.

Other Restrictions
HDL Coder imposes additional restrictions on the use of classic chart features. These
limitations exist because HDL does not support some features of general-purpose
sequential programming languages.

• Do not define local events in a chart from which HDL code is generated.

Do not use the following implicit events:

• enter
• exit
• change

You can use the following implicit events:

• wakeup
• tick

You can use temporal logic if the base events are limited to these types of implicit
events.

Note Absolute-time temporal logic is not supported for HDL code generation.
• Do not use recursion through graphical functions. HDL Coder does not currently

support recursion.
• Avoid unstructured code. Although charts allow unstructured code (through transition
flow diagrams and graphical functions), this usage results in goto statements and
multiple function return statements. HDL does not support either goto statements or

 Chart

3-51

multiple function return statements. Therefore, do not use unstructured flow
diagrams.

• If you have not selected the Initialize Outputs Every Time Chart Wakes Up chart
option, do not read from output ports.

• Do not use Data Store Memory objects.
• Do not use pointer (&) or indirection (*) operators. See “Pointer and Address

Operations” (Stateflow).
• If a chart gets a run-time overflow error during simulation, it is possible to disable

data range error checking and generate HDL code for the chart. However, in such
cases, some results obtained from the generated HDL code might not be bit-true to
results from the simulation. The recommended practice is to enable overflow checking
and eliminate overflow conditions from the model during simulation.

See Also
Sequence Viewer | State Transition Table | Truth Table

Topics
“Generate HDL for Mealy and Moore Finite State Machines”
“Design Patterns Using Advanced Chart Features”
“Hardware Realization of Stateflow Semantics”

Introduced in R2014a

3 Supported Blocks

3-52

Check Discrete Gradient
Check that absolute value of difference between successive samples of discrete signal is
less than upper bound (HDL Coder)

Description
The Check Discrete Gradient block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Discrete
Gradient.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Check Discrete Gradient

3-53

Check Dynamic Gap
Check that gap of possibly varying width occurs in range of signal's amplitudes (HDL
Coder)

Description
The Check Dynamic Gap block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Dynamic
Gap.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-54

Check Dynamic Lower Bound
Check that one signal is always less than another signal (HDL Coder)

Description
The Check Dynamic Lower Bound block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Dynamic
Lower Bound.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Check Dynamic Lower Bound

3-55

Check Dynamic Range
Check that signal falls inside range of amplitudes that varies from time step to time step
(HDL Coder)

Description
The Check Dynamic Range block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Dynamic
Range.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-56

Check Dynamic Upper Bound
Check that one signal is always greater than another signal (HDL Coder)

Description
The Check Dynamic Upper Bound block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Dynamic
Upper Bound.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Check Dynamic Upper Bound

3-57

Check Input Resolution
Check that input signal has specified resolution (HDL Coder)

Description
The Check Input Resolution block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Input
Resolution.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-58

Check Static Gap
Check that gap exists in signal's range of amplitudes (HDL Coder)

Description
The Check Static Gap block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Static
Gap.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Check Static Gap

3-59

Check Static Lower Bound
Check that signal is greater than (or optionally equal to) static lower bound (HDL Coder)

Description
The Check Static Lower Bound block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Static
Lower Bound.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-60

Check Static Range
Check that signal falls inside fixed range of amplitudes (HDL Coder)

Description
The Check Static Range block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Static
Range.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Check Static Range

3-61

Check Static Upper Bound
Check that signal is less than (or optionally equal to) static upper bound (HDL Coder)

Description
The Check Static Upper Bound block is available with Simulink.

For information about the simulation behavior and block parameters, see Check Static
Upper Bound.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-62

Chroma Resampler
Downsample or upsample chrominance component (HDL Coder)

Description
The Chroma Resampler block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Chroma
Resampler.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2015a

 Chroma Resampler

3-63

CIC Decimation
Decimate signal using Cascaded Integrator-Comb filter (HDL Coder)

Description
The CIC Decimation block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see CIC Decimation.

HDL Coder supports Coefficient source options Dialog parameters and Filter object.

HDL Architecture

AddPipelineRegisters Support
When you use AddPipelineRegisters, registers are placed based on the filter structure.
The pipeline register placement determines the latency.

Pipeline Register Placement Latency (clock cycles)
A pipeline register is added between the
comb stages of the differentiators.

NS-1, where NS is number of sections (at
the output side).

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

3 Supported Blocks

3-64

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the Filter Structure option Zero-latency

decimator is not supported for HDL code generation. From the Filter Structure
drop-down list, select Decimator.

Introduced in R2014a

 CIC Decimation

3-65

CIC Interpolation
Interpolate signal using Cascaded Integrator-Comb filter (HDL Coder)

Description
The CIC Interpolation block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see CIC
Interpolation.

HDL Coder supports Coefficient source options Dialog parameters and Filter object.

HDL Architecture

AddPipelineRegisters Support
When you use AddPipelineRegisters, registers are placed based on the filter structure.
The pipeline register placement determines the latency.

Pipeline Register Placement Latency (clock cycles)
A pipeline register is added between the
comb stages of the differentiators.

NS, the number of sections (at the input
side).

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

3 Supported Blocks

3-66

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the Filter Structure option Zero-latency

interpolator is not supported for HDL code generation. From the Filter Structure
drop-down list, select Interpolator.

• When you use AddPipelineRegisters, delays in parallel paths are not automatically
balanced. Manually add delays where required by your design.

Introduced in R2014a

 CIC Interpolation

3-67

Closing
Morphological close of binary pixel data (HDL Coder)

Description
The Closing block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Closing.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

3 Supported Blocks

3-68

Introduced in R2015a

 Closing

3-69

Color Space Converter
Convert color information between color spaces (HDL Coder)

Description
The Color Space Converter block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Color Space
Converter.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2015a

3 Supported Blocks

3-70

Compare To Constant
Determine how signal compares to specified constant (HDL Coder)

Description
The Compare To Constant block is available with Simulink.

For information about the simulation behavior and block parameters, see Compare To
Constant.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Compare To Constant

3-71

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-72

Compare To Zero
Determine how signal compares to zero (HDL Coder)

Description
The Compare To Zero block is available with Simulink.

For information about the simulation behavior and block parameters, see Compare To
Zero.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Compare To Zero

3-73

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-74

Complex to Magnitude-Angle HDL Optimized
Compute magnitude and/or phase angle of complex signal—optimized for HDL code
generation using the CORDIC algorithm (HDL Coder)

Description
The Complex to Magnitude-Angle HDL Optimized block is available with DSP System
Toolbox.

For information about the simulation behavior and block parameters, see Complex to
Magnitude-Angle HDL Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Complex to Magnitude-Angle HDL Optimized

3-75

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014b

3 Supported Blocks

3-76

Complex to Real-Imag
Output real and imaginary parts of complex input signal (HDL Coder)

Description
The Complex to Real-Imag block is available with Simulink.

For information about the simulation behavior and block parameters, see Complex to
Real-Imag.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Complex to Real-Imag

3-77

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-78

Constant
Generate constant value (HDL Coder)

Description
The Constant block is available with Simulink.

For information about the simulation behavior and block parameters, see Constant.

Tunable Parameters
You can use a tunable parameter in a Constant block intended for HDL code generation.
For details, see “Generate DUT Ports for Tunable Parameters”.

HDL Architecture
Architecture Parameters Description
default
Constant

None This implementation emits the value of the
Constant block.

Logic Value None By default, this implementation emits the
character 'Z' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'ZZZZ'.

{'Value', 'Z'} If the signal is in a high-impedance state, use
this parameter value. This implementation
emits the character 'Z' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'ZZZZ'.

 Constant

3-79

Architecture Parameters Description
{'Value', 'X'} If the signal is in an unknown state, use this

parameter value. This implementation emits
the character 'X' for each bit in the signal.
For example, for a 4-bit signal, the
implementation would emit 'XXXX'.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Restrictions
• The Logic Value implementation does not support the double data type. If you

specify this implementation for a constant value of type double, a code generation
error occurs.

• For Sample time, enter -1. Delay balancing does not support an inf sample time.

3 Supported Blocks

3-80

Introduced in R2014a

 Constant

3-81

Constellation Diagram
Display constellation diagram for input signals (HDL Coder)

Description
The Constellation Diagram block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Constellation
Diagram.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-82

Convert 1-D to 2-D
Reshape 1-D or 2-D input to 2-D matrix with specified dimensions (HDL Coder)

Description
The Convert 1-D to 2-D block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Convert 1-D to
2-D.

HDL Architecture
This block has a pass-through implementation.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Convert 1-D to 2-D

3-83

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-84

Convolutional Deinterleaver
Restore ordering of symbols that were permuted using shift registers (HDL Coder)

Description
The Convolutional Deinterleaver block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Convolutional
Deinterleaver.

HDL Architecture
• “Shift Register Based Implementation” on page 3-85
• “RAM Based Implementation” on page 3-85

Shift Register Based Implementation
The default implementation for the Convolutional Deinterleaver block is shift register-
based. If you want to suppress generation of reset logic, set the implementation
parameter ResetType to'none'.

When you set ResetType to'none', reset is not applied to the shift registers. When
registers are not fully loaded, mismatches between Simulink and the generated code
occur for some number of samples during the initial phase. To avoid spurious test bench
errors, determine the number of samples required to fill the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

RAM Based Implementation
When you select the RAM implementation for a Convolutional Deinterleaver block, HDL
Coder uses RAM resources instead of shift registers.

 Convolutional Deinterleaver

3-85

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Restrictions
When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
• At least two rows of interleaving are required.

Introduced in R2014a

3 Supported Blocks

3-86

Convolutional Encoder
Create convolutional code from binary data (HDL Coder)

Description
The Convolutional Encoder block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Convolutional
Encoder.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Convolutional Encoder

3-87

Restrictions
• Input data requirements:

• Must be sample-based,
• Must have a boolean or ufix1 data type.

• HDL Coder supports only the following coding rates:

• ½ to 1/7
• 2/3

• The coder supports only constraint lengths for 3 to 9.
• Specify Trellis structure by the poly2trellis function.
• The coder supports the following Operation mode settings:

• Continuous
• Reset on nonzero input via port

If you select this mode, you must select the Delay reset action to next time step
option. When you select this option, the Convolutional Encoder block finishes its
current computation before executing a reset.

• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2014a

3 Supported Blocks

3-88

Convolutional Interleaver
Permute input symbols using set of shift registers (HDL Coder)

Description
The Convolutional Interleaver block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Convolutional
Interleaver.

HDL Architecture
• “Shift Register Based Implementation” on page 3-89
• “RAM Based Implementation” on page 3-89

Shift Register Based Implementation
The default implementation for the Convolutional Interleaver block is shift register-based.
If you want to suppress generation of reset logic, set the implementation parameter
ResetType to'none'.

When you set ResetType to 'none', reset is not applied to the shift registers. When
registers are not fully loaded, mismatches between Simulink and the generated code
occur for some number of samples during the initial phase. To avoid spurious test bench
errors, determine the number of samples required to fill the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

RAM Based Implementation
When you select the RAM implementation for a Convolutional Interleaver block, HDL
Coder uses RAM resources instead of shift registers.

 Convolutional Interleaver

3-89

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Restrictions
When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
• At least two rows of interleaving are required.

Introduced in R2014a

3 Supported Blocks

3-90

Cosine
Implement fixed-point cosine wave using lookup table approach that exploits quarter
wave symmetry (HDL Coder)

Description
The Cosine block is available with Simulink.

For information about the simulation behavior and block parameters, see Sine, Cosine.

HDL Architecture
The HDL code implements Cosine using the quarter-wave lookup table that you specify in
the Simulink block parameters.

To avoid generating a division operator (/) in the HDL code, for Number of data points
for lookup table, enter (2^n)+1. n is an integer.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Cosine

3-91

Limitations
If you use Intel MAX 10 device, to map the lookup table to RAM, add this Tcl command
when creating the project in the Quartus tool:

set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE
WITH ERAM"

See Also
Cosine HDL Optimized | Sine | Sine HDL Optimized

Introduced in R2014a

3 Supported Blocks

3-92

Cosine HDL Optimized
Implement fixed-point cosine wave by using lookup table approach that exploits quarter
wave symmetry optimized for HDL code generation

Description
The Cosine HDL Optimized block is available in the Lookup Tables library in HDL Coder.
For information about the simulation behavior and block parameters, see Cosine HDL
Optimized.

For the most efficient HDL implementation, configure the block with an exact power of
two as the number of elements. In the Block Parameters dialog box, for Number of data
points, specify an integer that is an exact power of two. By default, the Number of data
points is 64.

When you specify a power of two for the Number of data points, the lookup tables
precede a register without reset after HDL code generation. The combination of the
lookup table block and register without reset map efficiently to RAM on the target device.

HDL Architecture
The HDL code implements the Cosine HDL Optimized block by using the quarter-wave
lookup table that you specify in the Simulink block parameters.

To generate code that is optimized for area and speed, for Number of data points, enter
(2^n). n is an integer.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 Cosine HDL Optimized

3-93

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

See Also
Cosine | Sine | Sine HDL Optimized

Introduced in R2016b

3 Supported Blocks

3-94

Coulomb and Viscous Friction
Model discontinuity at zero, with linear gain elsewhere (HDL Coder)

Description
The Coulomb and Viscous Friction block is available with Simulink.

For information about the simulation behavior and block parameters, see Coulomb and
Viscous Friction.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Coulomb and Viscous Friction

3-95

Restrictions
HDL code generation does not support complex input.

Introduced in R2014b

3 Supported Blocks

3-96

Counter Free-Running
Count up and overflow back to zero after reaching maximum value for specified number
of bits (HDL Coder)

Description
The Counter Free-Running block is available with Simulink.

For information about the simulation behavior and block parameters, see Counter Free-
Running.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Counter Free-Running

3-97

Counter Limited
Count up and wrap back to zero after outputting specified upper limit (HDL Coder)

Description
The Counter Limited block is available with Simulink.

For information about the simulation behavior and block parameters, see Counter
Limited.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-98

Data Type Conversion
Convert input signal to specified data type (HDL Coder)

Description
The Data Type Conversion block is available with Simulink.

For information about the simulation behavior and block parameters, see Data Type
Conversion.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Data Type Conversion

3-99

Note If you use double data types in your model, use this block for conversion between
double and single data types. You cannot use the block to convert between double
and fixed-point data types.

Native Floating Point
With the HDL Model Checker, you can replace Data Type Conversion blocks that use the
Stored Integer (SI) mode and convert between floating-point and fixed-point data
types with Float Typecast blocks.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

Complex Data Support
This block supports code generation for complex signals.

Restrictions
If you configure a Data Type Conversion block for double to fixed-point conversion or
fixed-point to double conversion, a warning is displayed during code generation.

Introduced in R2014a

3 Supported Blocks

3-100

Data Type Duplicate
Force all inputs to same data type (HDL Coder)

Description
The Data Type Duplicate block is available with Simulink.

For information about the simulation behavior and block parameters, see Data Type
Duplicate.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Data Type Duplicate

3-101

Data Type Propagation
Set data type and scaling of propagated signal based on information from reference
signals (HDL Coder)

Description
The Data Type Propagation block is available with Simulink.

For information about the simulation behavior and block parameters, see Data Type
Propagation.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-102

DC Blocker
Block DC component (HDL Coder)

Description
The DC Blocker block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see DC Blocker.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

 DC Blocker

3-103

Introduced in R2014b

3 Supported Blocks

3-104

Dead Zone
Provide region of zero output (HDL Coder)

Description
The Dead Zone block is available with Simulink.

For information about the simulation behavior and block parameters, see Dead Zone.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014b

 Dead Zone

3-105

Dead Zone Dynamic
Set inputs within bounds to zero (HDL Coder)

Description
The Dead Zone Dynamic block is available with Simulink.

For information about the simulation behavior and block parameters, see Dead Zone
Dynamic.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014b

3 Supported Blocks

3-106

Decrement Real World
Decrease real world value of signal by one (HDL Coder)

Description
The Decrement Real World block is available with Simulink.

For information about the simulation behavior and block parameters, see Decrement Real
World.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Decrement Real World

3-107

Decrement Stored Integer
Decrease stored integer value of signal by one (HDL Coder)

Description
The Decrement Stored Integer block is available with Simulink.

For information about the simulation behavior and block parameters, see Decrement
Stored Integer.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-108

Delay
Delay input signal by fixed or variable sample periods (HDL Coder)

Description
The Delay block is available with Simulink. For information about simulation behavior and
block parameters, see Delay.

Block Parameter Setting Description
Set External reset to Level . Generates a reset port in the HDL code.
Select Show enable port. Generates an enable port in the HDL code.
For Initial condition, set Source to
Dialog and enter the value.

Specifies an initial condition for the block.

Set Input processing to Columns as
channels (frame based).

Expects vector input data, where each
element of the vector represents a sample in
time.

Additional Settings When Using State Control Block
If you use a State Control block with the Delay block inside a subsystem in your Simulink
model, use these additional settings.

Block Parameter Setting Description
Set External reset to Level hold for
Synchronous mode and Level for
Classic mode of the State Control block.

Generates a reset port in the HDL code.

Set Delay length to zero for a Delay block
with an external enable port.

Treated as a wire in only Synchronous
mode of the State Control block.

Set Delay length to zero for a Delay block
with an external reset port.

Treated as a wire in Synchronous and
Classic modes of the State Control block.

For more information about the State Control block, see State Control.

 Delay

3-109

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

UseRAM
Map delays to RAM instead of registers. The default is off. See also “UseRAM”.

Complex Data Support
This block supports code generation for complex signals.

Restrictions
For Initial condition and Delay length, Source set to Input port is not supported for
HDL code generation.

Introduced in R2014a

3 Supported Blocks

3-110

Demosaic Interpolator
Construct RGB pixel data from Bayer pattern pixels (HDL Coder)

Description
The Demosaic Interpolator block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Demosaic
Interpolator.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Demosaic Interpolator

3-111

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2015a

3 Supported Blocks

3-112

Demux
Extract and output elements of vector signal (HDL Coder)

Description
The Demux block is available with Simulink.

For information about the simulation behavior and block parameters, see Demux.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

 Demux

3-113

Introduced in R2014a

3 Supported Blocks

3-114

Depuncturer
Reverse puncturing scheme to prepare for decoding (HDL Coder)

Description
The Depuncturer block is available with LTE HDL Toolbox™.

For information about the simulation behavior and block parameters, see Depuncturer.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

 Depuncturer

3-115

Introduced in R2018b

3 Supported Blocks

3-116

Deserializer1D
Convert scalar stream or smaller vectors to vector signal (HDL Coder)

Description
The Deserializer1D block is available with Simulink.

For information about the simulation behavior and block parameters, see Deserializer1D.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014b

 Deserializer1D

3-117

Detect Change
Detect change in signal value (HDL Coder)

Description
The Detect Change block determines whether there is a change in the input signal from
its previous value. The Detect Change block is available with Simulink. For information
about the simulation behavior and block parameters, see Detect Change.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2018b

3 Supported Blocks

3-118

Detect Decrease
Detect decrease in signal value (HDL Coder)

Description
The Detect Decrease block determines whether the input signal is less than its previous
value. When the input signal is less than the previous value, the output is true or equal to
one. When the input is greater than or equal to the previous value, the output is false or
equal to zero.

The Detect Decrease block is available with Simulink. For information about the
simulation behavior and block parameters, see Detect Decrease.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Detect Decrease

3-119

Introduced in R2018b

3 Supported Blocks

3-120

Detect Increase
Detect increase in signal value (HDL Coder)

Description
The Detect Increase block determines whether the input signal is greater than its
previous value. When the input signal is greater than the previous value, the output is
true or equal to one. When the input is less than or equal to the previous value, the output
is false or equal to zero.

The Detect Increase block is available with Simulink. For information about the
simulation behavior and block parameters, see Detect Increase.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Detect Increase

3-121

Introduced in R2018b

3 Supported Blocks

3-122

Digital Filter (Obsolete)
Filter each channel of input over time using static or time-varying digital filter
implementations (HDL Coder)

Description
The Digital Filter block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Digital Filter.

Note Use of Digital Filter block in future releases is not recommended. Existing
instances will continue to operate, but certain functionality will be disabled. See
“Functionality being removed or replaced for blocks and System objects” (DSP System
Toolbox). We strongly recommend using Discrete FIR Filter or Biquad Filter in new
designs.

HDL Architecture
When you specify SerialPartition and ReuseAccum for a Digital Filter block, observe
the following constraints.

• If you specify Dialog parameters as the Coefficient source:

• Set Transfer function type to FIR (all zeros).
• Select Filter structure as one of: Direct form, Direct form symmetric, or

Direct form asymmetric.

Distributed Arithmetic Support
Distributed Arithmetic properties DALUTPartition and DARadix are supported for the
following filter structures.

 Digital Filter (Obsolete)

3-123

Architecture Supported FIR Structures
default FIR, Asymmetric FIR, and Symmetric FIR

AddPipelineRegisters Support
When you use AddPipelineRegisters, registers are placed based on the filter structure.
The pipeline register placement determines the latency.

Architecture Pipeline Register
Placement

Latency (clock cycles)

FIR, Asymmetric FIR, and
Symmetric FIR filters

A pipeline register is added
between levels of a tree-
based adder.

ceil(log2(FL)).
FL is the filter length.

FIR Transposed A pipeline register is added
after the products.

1

IIR SOS Pipeline registers are added
between the filter sections.

NS-1.
NS is the number of
sections.

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area by
replacing coefficient multipliers with shift-and-add logic. When you choose a fully
parallel filter implementation, you can set CoeffMultipliers to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. See also
CoeffMultipliers.

DALUTPartition
Specify distributed arithmetic partial-product LUT partitions as a vector of the sizes
of each partition. The sum of all vector elements must be equal to the filter length.
The maximum size for a partition is 12 taps. Set DALUTPartition to a scalar value

3 Supported Blocks

3-124

equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

ReuseAccum
Enable or disable accumulator reuse in a serial filter implementation. Set
ReuseAccum to on to use a cascade-serial implementation. See also ReuseAccum.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Coefficients and Data Support
Except for decimator and interpolator filter structures, HDL Coder supports use of
complex coefficients and complex input signals for all filter structures of the Digital Filter
block.

 Digital Filter (Obsolete)

3-125

Restrictions
• You must set Initial conditions to zero. HDL code generation is not supported for

nonzero initial states.
• HDL Coder does not support the Digital Filter block Input port(s) option for HDL

code generation.

Introduced in R2015a

3 Supported Blocks

3-126

Dilation
Morphological dilate of binary pixel data (HDL Coder)

Description
The Dilation block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Dilation.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

 Dilation

3-127

Introduced in R2015a

3 Supported Blocks

3-128

Direct Lookup Table (n-D)
Index into N-dimensional table to retrieve element, column, or 2-D matrix (HDL Coder)

Description
The Direct Lookup Table (n-D) block is available with Simulink.

For information about the simulation behavior and block parameters, see Direct Lookup
Table (n-D).

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Direct Lookup Table (n-D)

3-129

Restrictions

MAX 10 Device Settings
If you use Intel MAX 10 device, to map the lookup table to RAM, add this Tcl command
when creating the project in the Quartus tool:

set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE
WITH ERAM"

Required Block Settings
• Number of table dimensions: HDL Coder supports a maximum dimension of 2.
• Inputs select this object from table: Select Element.
• Make table an input: Clear this check box.
• Diagnostic for out-of-range input: Select Error. If you select other options, the

coder displays a warning.

Table Data Typing and Sizing
• It is good practice to size each dimension in the table to be a power of two. If the

length of a dimension (except the innermost dimension) is not a power of two, HDL
Coder issues a warning. By following this practice, you can avoid multiplications
during table indexing operations and realize a more efficient table in hardware.

• Table data must resolve to a nonfloating-point data type. The coder examines the
output port to verify that its data type meets this requirement.

• All ports on the block require scalar values.

Introduced in R2014a

3 Supported Blocks

3-130

Discrete FIR Filter
Model finite impulse response filter (HDL Coder)

Description
The Discrete FIR Filter block is available with Simulink, but a DSP System Toolbox license
is required to use a filter structure other than direct form.

For information about the simulation behavior and block parameters, see Discrete FIR
Filter.

For hardware-friendly valid and reset control signals, and to model exact hardware
latency behavior in Simulink, use the Discrete FIR Filter HDL Optimized block instead.

Multichannel Filter Support
HDL Coder supports the use of vector inputs to Discrete FIR Filter blocks, where each
element of the vector represents an independent channel.

1 Connect a vector signal to the Discrete FIR Filter block input port.
2 Specify Input processing as Elements as channels (sample based).
3 To reduce area by sharing the filter kernel between channels, set the

StreamingFactor of the subsystem to the number of channels. See the Streaming
section of “Subsystem Optimizations for Filters”.

Programmable Filter Support
HDL Coder supports programmable filters for Discrete FIR Filter blocks.

1 On the filter block mask, set Coefficient source to Input port.
2 Connect a vector signal to the Num coefficient port.

Frame-Based Input Support
HDL Coder supports the use of vector inputs to Discrete FIR Filter blocks, where each
element of the vector represents a sample in time. You can use an input vector of up to

 Discrete FIR Filter

3-131

512 samples. The frame-based implementation supports fixed-point input and output data
types, and uses full-precision internal data types. You can use real input signals with real
coefficients, complex input signals with real coefficients, or real input signals with
complex coefficients.

1 Connect a vector signal to the Discrete FIR Filter block input port.
2 Specify Input processing as Columns as channels (frame based).
3 Right-click the block and open HDL Code > HDL Block Properties. Set the

Architecture to Frame Based. The block implements a parallel HDL architecture.
See “Frame-Based Architecture”.

Control Ports
You can generate HDL code for filters with or without the optional enable port, and with
or without the optional reset port.

HDL Architecture
To reduce area or increase speed, the Discrete FIR Filter block supports either block-level
optimizations or subsystem-level optimizations. When you enable block optimizations, the
block cannot participate in subsystem optimizations. Use block optimizations when your
design is a single one-channel filter. Use subsystem optimizations to share resources
across multiple channels or multiple filters.

Right-click on the block or the subsystem to open the corresponding HDL Properties
dialog box and set optimization properties.

Block Optimizations

To use block-level optimizations to reduce hardware resources, set Architecture to one
of the serial options. See “HDL Filter Architectures”.

When you specify SerialPartition and ReuseAccum for a Discrete FIR Filter block, set
Filter structure to Direct form, Direct form symmetric, or Direct form
asymmetric. The Direct form transposed structure is not supported with serial
architectures.

3 Supported Blocks

3-132

To minimize multipliers by replacing them with LUTs and shift registers, use a distributed
arithmetic (DA) filter implementation. See “Distributed Arithmetic for HDL Filters”.

When you select the Distributed Arithmetic (DA) architecture and use the
DALUTPartition and DARadix distributed arithmetic properties, set Filter structure to
Direct form, Direct form symmetric, or Direct form asymmetric. The Direct
form transposed structure is not supported with distributed arithmetic.

To share logic between channels, you can use the subsystem-level StreamingFactor or
the block-level ChannelSharing option. StreamingFactor operates over all eligible
logic in a subsystem, rather than on a single block. It also enables the filter to participate
in other subsystem optimizations, whereas ChannelSharing excludes the filter from
other optimizations.

To improve clock speed, use AddPipelineRegisters to use a pipelined adder tree rather
than the default linear adder. You can also specify the number of pipeline stages before
and after the multipliers. See “HDL Filter Architectures”.

Subsystem Optimizations
This block can participate in subsystem-level optimizations such as sharing, streaming,
and pipelining. For the block to participate in subsystem-level optimizations, set the
Architecture to Fully parallel. See “Subsystem Optimizations for Filters”.

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

ChannelSharing
For a multichannel filter, generate a single filter implementation to be shared between
channels. See also ChannelSharing.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area by
replacing coefficient multipliers with shift-and-add logic. When you choose a fully

 Discrete FIR Filter

3-133

parallel filter implementation, you can set CoeffMultipliers to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. See also
CoeffMultipliers.

DALUTPartition
Specify distributed arithmetic partial-product LUT partitions as a vector of the sizes
of each partition. The sum of all vector elements must be equal to the filter length.
The maximum size for a partition is 12 taps. Set DALUTPartition to a scalar value
equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

DARadix
Specify how many distributed arithmetic bit sums are computed in parallel. A DA
radix of 8 (2^3) generates a DA implementation that computes three sums at a time.
The default value is 2^1, which generates a fully serial DA implementation. See also
DARadix.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

ReuseAccum
Enable or disable accumulator reuse in a serial filter implementation. Set
ReuseAccum to on to use a cascade-serial implementation. See also ReuseAccum.

SerialPartition
Specify partitions for partly serial or cascade-serial filter implementations as a vector
of the lengths of each partition. For a fully serial implementation, set this parameter
to the length of the filter. See also SerialPartition.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

3 Supported Blocks

3-134

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• HDL code generation is not supported for:

• Unsigned input data.
• Nonzero initial states. You must set Initial states to 0.
• Filter Structure: Lattice MA.

• CoeffMultipliers options are supported only when using a fully parallel architecture.
When you select a serial architecture, CoeffMultipliers is hidden from the HDL Block
Properties dialog box.

Programmable filters are not supported for:

• Architectures for which you specify the coefficients by dialog box parameters (for
example, complex input and coefficients with serial architecture)

• distributed arithmetic (DA)
• CoeffMultipliers set to csd or factored-csd
• Frame-based input

Frame-based input filters are not supported for:

• Optional block-level reset and enable control signals
• Resettable and enabled subsystems
• Complex input signals with complex coefficients. You can use either complex input

signals and real coefficients, or complex coefficients and real input signals.
• Programmable coefficients

 Discrete FIR Filter

3-135

• Multichannel input
• Sharing and streaming optimizations

See Also

Topics
Generate HDL Code for FIR Programmable Filter

Introduced in R2014a

3 Supported Blocks

3-136

Discrete FIR Filter HDL Optimized
Model finite impulse response filter — HDL optimized (HDL Coder)

Description
The Discrete FIR Filter HDL Optimized block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Discrete FIR
Filter HDL Optimized.

For FIR filters with programmable or complex coefficients, or with multichannel or frame-
based inputs, use the Discrete FIR Filter block instead.

HDL Architecture
The block provides two hardware architectures. The direct form systolic structure
provides a configurable serial implementation or a fully parallel implementation. It makes
efficient use of Intel and Xilinx DSP blocks. The direct form transposed structure is a fully
parallel implementation, and is suitable for FPGA and ASIC applications. Both fully
parallel architectures automatically optimize hardware resources by sharing multipliers
when two or more coefficients have the same absolute values, such as in symmetric/anti-
symmetric filters. The fully parallel architectures also remove the multipliers for zero-
value coefficients such as in half-band filters and Hilbert transforms. For a filter
implementation that matches multipliers, pipeline registers, and pre-adders to the DSP
configuration of your FPGA vendor, specify your target device when you generate HDL
code.

You can set block parameters to make tradeoffs between throughput and resource
utilization.

• For highest throughput, choose a fully parallel systolic or transposed architecture. The
generated code can accept input data and provides filtered output data on every cycle.

• For reduced area, select Share DSP resources. Then specify a Sharing factor of N
≥ 2. In this case, the generated code accepts only input samples that are at least N
cycles apart.

 Discrete FIR Filter HDL Optimized

3-137

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• The Discrete FIR Filter HDL Optimized block does not support:

• HDL code generation for floating-point input data types.
• Complex coefficients.
• Vector inputs. The block is sample based, accepting one scalar at a time.
• Programmable filters. Specify filter coefficients by using the Coefficients block

parameter instead.
• Resource sharing optimization through HDL Coder. Use the Share DSP resources

and Sharing factor block parameters instead.

Introduced in R2017a

3 Supported Blocks

3-138

Discrete PID Controller
Simulate discrete-time PID controllers (HDL Coder)

Description
The Discrete PID Controller block is available with Simulink.

For information about the simulation behavior and block parameters, see Discrete PID
Controller.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Discrete PID Controller

3-139

Restrictions
HDL code generation does not support the following settings:

• Continuous-time.
• Filter method > Backward Euler or Trapezoidal.
• Source > external.
• External reset > rising, falling, either, or level.
• If inputs are of type Double, Anti-windup method > clamping.

Introduced in R2014a

3 Supported Blocks

3-140

Discrete Transfer Fcn
Implement discrete transfer function (HDL Coder)

Description
The Discrete Transfer Fcn block is available with Simulink.

For information about the simulation behavior and block parameters, see Discrete
Transfer Fcn.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Discrete Transfer Fcn

3-141

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to minimum or maximum latency for
the floating-point operator. The default is inherit. See also “Latency Considerations
with Native Floating Point”.

MantissaMultiplyStrategy
Specify how to implement the mantissa multiplication operation during code
generation. By using different settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also “Mantissa Multiplier Strategy”.

Restrictions
• You must use the Inherit: Inherit via internal rule option for data type propagation

only if the input data type is double.
• Frame, matrix, and vector input data types are not supported.
• The leading denominator coefficient (a0) must be 1 or -1.

The Discrete Transfer Fcn block is excluded from the following optimizations:

• Resource sharing
• Distributed pipelining

Introduced in R2014a

3 Supported Blocks

3-142

Discrete-Time Integrator
Perform discrete-time integration or accumulation of signal (HDL Coder)

Description
The Discrete-Time Integrator block is available with Simulink.

For information about the simulation behavior and block parameters, see Discrete-Time
Integrator.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Discrete-Time Integrator

3-143

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to minimum or maximum latency for
the floating-point operator. The default is inherit. See also “Latency Considerations
with Native Floating Point”.

MantissaMultiplyStrategy
Specify how to implement the mantissa multiplication operation during code
generation. By using different settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also “Mantissa Multiplier Strategy”.

Restrictions
• State ports are not supported for HDL code generation. Clear the Show state port

option.
• External initial conditions are not supported for HDL code generation. Set Initial

condition source to Internal.
• External Reset must be set to none, rising, or falling.
• Width of input and output signals must not exceed 32 bits.

Introduced in R2014a

3 Supported Blocks

3-144

Display
Show value of input (HDL Coder)

Description
The Display block is available with Simulink.

For information about the simulation behavior and block parameters, see Display.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Display

3-145

Divide
Divide one input by another (HDL Coder)

Description
The Divide block is available with Simulink. For information about the simulation behavior
and block parameters, see Divide.

Note When you deploy the generated HDL code onto the target hardware, make sure
that you set the signed integer division rounds to parameter in the Hardware
Implementation pane of the Configuration Parameters dialog box to Zero or Simplest.

HDL Architecture
To perform an HDL-optimized divide operation, connect a Product block to a Divide block
in reciprocal mode. For information about the Divide block in reciprocal mode, see
“Reciprocal Mode” on page 3-146.

Default Mode
In default mode, the Divide block supports only integer data types for HDL code
generation.

Architecture Parameters Description
default
Linear

None Generate a divide (/) operator in
the HDL code.

Reciprocal Mode
When Number of Inputs is set to /, the Divide block is in reciprocal mode.

This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

3 Supported Blocks

3-146

In reciprocal mode, the Divide block has the HDL block implementations described in the
following table.

Architectures Parameter
s

Additional
cycles of
latency

Description

default
Linear

None 0 When you compute a
reciprocal, use the HDL
divide (/) operator to
implement the division.

ReciprocalRsqrtBasedNewton Iteration
s

Signed
input:
Iteration
s + 5

Unsigned
input:
Iteration
s + 3

Use the iterative Newton
method. Select this
option to optimize area.

The default value for
Iterations is 3.

The recommended value
for Iterations is
between 2 and 10. If
Iterations is outside
the recommended range,
HDL Coder displays a
message.

 Divide

3-147

Architectures Parameter
s

Additional
cycles of
latency

Description

ReciprocalRsqrtBasedNewtonSingleRate Iteration
s

Signed
input:
(Iteratio
ns * 4) + 8

Unsigned
input:
(Iteratio
ns * 4) + 6

Use the single rate
pipelined Newton
method. Select this
option to optimize speed,
or if you want a single
rate implementation.

The default value for
Iterations is 3.

The recommended value
for Iterations is
between 2 and 10. If
Iterations is outside
the recommended range,
the coder displays a
message.

The Newton-Raphson iterative method:

x x
f x

f x
x axi i

i

i
i i+

= - = -1
2

1 5 0 5
()

’()
(. .)

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate
implement the Newton-Raphson method with:

f x
x

() = -

1
1

2

3 Supported Blocks

3-148

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coder adds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

 Divide

3-149

MantissaMultiplyStrategy
If you use the Divide block in reciprocal mode, you can specify how to implement the
mantissa multiplication operation during code generation. By using different settings,
you can control the DSP usage on the target FPGA device. The default is inherit.
See also “Mantissa Multiplier Strategy”.

DivisionAlgorithm
Specify whether to use the Radix-2 or Radix-4 algorithm to perform the floating-point
division. The Radix-2 mode offers a trade-off between latency and frequency. The
Radix-4 mode offers a trade-off between latency and resource usage. For more
information, see “DivisionAlgorithm”.

Complex Data Support
This block does not support code generation for division with complex signals.

Restrictions
When you use the Divide block in reciprocal mode, the following restrictions apply:

• The input must be scalar and must have integer or fixed-point (signed or unsigned)
data type.

• The output must be scalar and have integer or fixed-point (signed or unsigned) data
type.

• Only the Zero rounding mode is supported.
• You must select the Saturate on integer overflow option on the block.

Introduced in R2014a

3 Supported Blocks

3-150

DocBlock
Create text that documents model and save text with model (HDL Coder)

Description
The DocBlock block is available with Simulink.

For information about the simulation behavior and block parameters, see DocBlock.

HDL Architecture
Architecture Description
Annotation (default) Insert text as comment in the generated code.
HDLText Integrate text as custom HDL code.
No HDL Do not generate HDL code for this block.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 DocBlock

3-151

TargetLanguage
Language of the text, either Verilog or VHDL. The default is VHDL.

When Architecture is HDLText, this property is available. To learn more, see
“Integrate Custom HDL Code Using DocBlock”.

Restrictions
• Document type must be Text.

HDL Coder does not support the HTML or RTF options.
• You can have a maximum of two DocBlock blocks with Architecture set to HDLText in

the same subsystem.

If you have two DocBlock blocks, one must have TargetLanguage set to VHDL, and
the other must have TargetLanguage set to Verilog. When generating code, HDL
Coder only integrates the custom code from the DocBlock that matches the target
language for code generation.

See Also

Topics
“Generate Code with Annotations or Comments”
“Integrate Custom HDL Code Using DocBlock”

Introduced in R2014a

3 Supported Blocks

3-152

Dot Product
Generate dot product of two vectors (HDL Coder)

Description
The Dot Product block is available with Simulink.

For information about the simulation behavior and block parameters, see Dot Product.

HDL Architecture
Architecture Description
Linear (default) Generates a linear chain of adders to compute the

sum of products.
Tree Generates a tree structure of adders to compute the

sum of products.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Dot Product

3-153

Introduced in R2014a

3 Supported Blocks

3-154

Downsample
Resample input at lower rate by deleting samples (HDL Coder)

Description
The Downsample block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Downsample.

Best Practices
It is good practice to follow the Downsample block with a unit delay. Doing so prevents
the code generator from inserting an extra bypass register in the HDL code.

See also “Multirate Model Requirements for HDL Code Generation”.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Downsample

3-155

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Restrictions
• Input processing set to Columns as channels (frame based) is not supported.
• For Input processing set to Elements as channels (sample based), select

Allow multirate processing. With this setting, if Sample offset is set to 0,
Initial conditions has no effect on generated code.

Introduced in R2014a

3 Supported Blocks

3-156

Dual Port RAM
Dual port RAM with two output ports (HDL Coder)

Description
The Dual Port RAM block is available with Simulink.

For information about the simulation behavior and block parameters, see Dual Port RAM.

HDL Architecture
This block has a single, default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language file name extension.

RAM Initialization
Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable
The HDL block property, RAMArchitecture, enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

• WithClockEnable (default): Generates RAMs using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

 Dual Port RAM

3-157

• WithoutClockEnable: Generates RAMs without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAMs with a clock enable. If your synthesis tool does
not support RAM structures with a clock enable, and cannot map your generated HDL
code to FPGA RAM resources, set RAMArchitecture to 'WithoutClockEnable'. To
learn how to generate RAMs without clock enables for your design, see the Getting
Started with RAM and ROM example. To open the example, at the command prompt,
enter:

hdlcoderramrom

RAM Inference Limitations
If you use RAM blocks to perform concurrent read and write operations, verify the read-
during-write behavior in hardware. The read-during-write behavior of the RAM blocks in
Simulink matches that of the generated behavioral HDL code. However, if a synthesis tool
does not follow the same behavior during RAM inference, it causes the read-during-write
behavior in hardware to differ from the behavior of the Simulink model or generated HDL
code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 3-157.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-158

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Dual Port RAM

3-159

Dual Port RAM System
Dual port RAM with two output ports and ability to specify initial value (HDL Coder)

Description
The Dual Port RAM System block is available in the HDL RAMs sublibrary in the HDL
Coder block library. For information about the simulation behavior and block parameters,
see Dual Port RAM System, Simple Dual Port RAM System, Single Port RAM System.

The Dual Port RAM System block is a MATLAB System block that uses the hdl.RAM
System object™. The simulation and HDL code generation behavior of the block is similar
to the Dual Port RAM block. In addition, you can:

• Specify an initial value for the RAM. Double-click the block to open the Block
Parameters dialog box, and then enter a value for Specify the RAM initial value.

• Obtain faster simulation results when you use these blocks in your Simulink model.
• Create parallel RAM banks when you use vector data by leveraging the hdl.RAM

System object functionality.
• Obtain higher performance and support for large data memories.

Note When you build the FPGA bitstream for the RAM, the global reset logic does not
reset the RAM contents.To reset the RAM, make sure that you implement the reset logic.

HDL Architecture
The block has a MATLABSystem architecture which indicates that the block
implementation uses the hdl.RAM System object.

3 Supported Blocks

3-160

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

See Also
System Objects
hdl.RAM

Blocks
Simple Dual Port RAM System | Single Port RAM System

Topics
“HDL Code Generation from hdl.RAM System Object”
“Getting Started with RAM and ROM in Simulink®”
“Implement RAM Using MATLAB Code”
“HDL Code Generation for System Objects”

Introduced in R2017b

 Dual Port RAM System

3-161

Dual Rate Dual Port RAM
Dual Port RAM that supports two rates (HDL Coder)

Description
The Dual Rate Dual Port RAM block is available with Simulink.

For information about the simulation behavior and block parameters, see Dual Rate Dual
Port RAM.

HDL Architecture
This block has a single, default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language file name extension.

RAM Initialization
Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable
The HDL block property, RAMArchitecture, enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

3 Supported Blocks

3-162

• WithClockEnable (default): Generates RAM using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

• WithoutClockEnable: Generates RAM without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAM with a clock enable. If your synthesis tool does not
support RAM structures with a clock enable, and cannot map your generated HDL code to
FPGA RAM resources, set RAMArchitecture to WithoutClockEnable.

RAM Inference Limitations
If you use RAM blocks to perform concurrent read and write operations, verify the read-
during-write behavior in hardware. The read-during-write behavior of the RAM blocks in
Simulink matches that of the generated behavioral HDL code. However, if a synthesis tool
does not follow the same behavior during RAM inference, it causes the read-during-write
behavior in hardware to differ from the behavior of the Simulink model or generated HDL
code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 3-162.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Dual Rate Dual Port RAM

3-163

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-164

Edge Detector
Find edges of objects in image (HDL Coder)

Description
The Edge Detector block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Edge Detector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

 Edge Detector

3-165

Introduced in R2015a

3 Supported Blocks

3-166

Enable
Add enabling port to system (HDL Coder)

Description
The Enable block is available with Simulink.

For information about the simulation behavior and block parameters, see Enable.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

See Also
Enabled Subsystem

 Enable

3-167

Introduced in R2014a

3 Supported Blocks

3-168

Enabled Subsystem
Represent subsystem whose execution is enabled by external input (HDL Coder)

Description
An enabled subsystem is a subsystem that receives a control signal via an Enable block.
The enabled subsystem executes at each simulation step where the control signal has a
positive value.

For detailed information on how to construct and configure enabled subsystems, see
“Using Enabled Subsystems” (Simulink).

Best Practices
When using enabled subsystems in models targeted for HDL code generation, it is good
practice to consider the following:

• For synthesis results to match Simulink results, the Enable port must be driven by
registered logic (with a synchronous clock) on the FPGA.

• Put unit delays on Enabled Subsystem output signals. Doing so prevents the code
generator from inserting extra bypass registers in the HDL code.

• Enabled subsystems can affect synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of enabled

subsystem instances and the number of output ports per subsystem.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.

 Enabled Subsystem

3-169

Architecture Description
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

3 Supported Blocks

3-170

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
This block cannot be the DUT, so the block property settings in the Target Specification
tab are ignored.

Restrictions
HDL Coder supports HDL code generation for enabled subsystems that meet the
following conditions:

• The enabled subsystem is not the DUT.
• The subsystem is not both triggered and enabled.
• The enable signal is a scalar.
• The data type of the enable signal is either boolean or ufix1.
• Outputs of the enabled subsystem have an initial value of 0.

 Enabled Subsystem

3-171

• All inputs and outputs of the enabled subsystem (including the enable signal) run at
the same rate.

• The Show output port parameter of the Enable block is set to Off.
• The States when enabling parameter of the Enable block is set to held (i.e., the

Enable block does not reset states when enabled).
• The Output when disabled parameter for the enabled subsystem output ports is set

to held (i.e., the enabled subsystem does not reset output values when disabled).
• If the DUT contains the following blocks, RAMArchitecture is set to

WithClockEnable:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM

• The enabled subsystem does not contain the following blocks:

• CIC Decimation
• CIC Interpolation
• FIR Decimation
• FIR Interpolation
• Downsample
• Upsample
• HDL Cosimulation blocks for HDL Verifier
• Rate Transition

Example
The Automatic Gain Controller example shows how you can use enabled subsystems in
HDL code generation. To open the example, enter:

hdlcoder_agc

See Also
Enable | Subsystem

3 Supported Blocks

3-172

Introduced in R2014a

 Enabled Subsystem

3-173

Enabled Synchronous Subsystem
Represent enabled subsystem that has synchronous reset and enable behavior (HDL
Coder)

Description
The Enabled Synchronous Subsystem block is available with Simulink.

For information about the simulation behavior and block parameters, see Enabled
Synchronous Subsystem.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

3 Supported Blocks

3-174

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Enabled Synchronous Subsystem

3-175

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
If this block is not the DUT, the block property settings in the Target Specification tab
are ignored.

In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target
specification block property values are saved with the model. If you specify these target
specification block property values using hdlset_param, when you open HDL Workflow
Advisor, the fields are populated with the corresponding values.

ProcessorFPGASynchronization
Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core Generation
workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
TestPointMapping

To save this block property on the model, specify the mapping of test point ports to
target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'

3 Supported Blocks

3-176

TunableParameterMapping
To save this block property on the model, specify the mapping of tunable parameter
ports to target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
IPCoreAdditionalFiles

Verilog or VHDL files for black boxes in your design. Specify the full path to each file,
and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional source
files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName
IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core name field. If
this property is set to the default value, the HDL Workflow Advisor constructs the IP
core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion

IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core version field. If
this property is set to the default value, the HDL Workflow Advisor sets the IP core
version.

Values: '' (default) | character vector

Example: '1.3'

 Enabled Synchronous Subsystem

3-177

Restrictions
• Your DUT cannot be an Enabled Synchronous Subsystem.
• You cannot have a Delay block with an external reset port inside the subsystem.
• You cannot generate HDL for the Turbo Decoder block inside an Enabled Synchronous

Subsystem.

See Also
Enable | Resettable Synchronous Subsystem | State Control | Synchronous Subsystem

Topics
“Resettable Subsystem Support in HDL Coder™”
“Using the State Control block to generate more efficient code with HDL Coder™”
“Synchronous Subsystem Behavior with the State Control Block”

Introduced in R2016a

3 Supported Blocks

3-178

Enumerated Constant
Generate enumerated constant value (HDL Coder)

Description
The Enumerated Constant block is available with Simulink.

For information about the simulation behavior and block parameters, see Enumerated
Constant.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Enumerated Constant

3-179

Erosion
Morphological erode of binary pixel data (HDL Coder)

Description
The Erosion block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Erosion.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

3 Supported Blocks

3-180

Introduced in R2015a

 Erosion

3-181

Error Rate Calculation
Compute bit error rate or symbol error rate of input data (HDL Coder)

Description
The Error Rate Calculation block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Error Rate
Calculation.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-182

Extract Bits
Output selection of contiguous bits from input signal (HDL Coder)

Description
The Extract Bits block is available with Simulink.

For information about the simulation behavior and block parameters, see Extract Bits.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Extract Bits

3-183

Eye Diagram
Display multiple traces of modulated signal (HDL Coder)

Description
The Eye Diagram block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Eye Diagram.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014b

3 Supported Blocks

3-184

FFT HDL Optimized
Fast Fourier transform—optimized for HDL code generation (HDL Coder)

Description
The FFT HDL Optimized block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see FFT HDL
Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 FFT HDL Optimized

3-185

Restrictions
• If you use the FFT HDL Optimized block with the State Control block inside an

Enabled Subsystem, the optional reset port is not supported. If you enable the reset
port on the FFT HDL Optimized block in such a subsystem, the model will error on
Update Diagram.

Introduced in R2014a

3 Supported Blocks

3-186

FIR Decimation
Filter and downsample input signals (HDL Coder)

Description
The FIR Decimation block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see FIR Decimation.

HDL Coder supports Coefficient source options Dialog parameters, Filter object, or
Auto. Programmable coefficients are not supported.

Frame-Based Input Support
HDL Coder supports the use of vector inputs to FIR Decimation blocks, where each
element of the vector represents a sample in time. You can use an input vector of up to
512 samples. The frame-based implementation supports fixed-point input and output data
types, and uses full-precision internal data types. The output is a column vector of
reduced size, corresponding to your decimation factor. You can use real input signals with
real coefficients, complex input signals with real coefficients, or real input signals with
complex coefficients.

1 Connect a column vector signal to the FIR Decimation block input port.
2 Specify Input processing as Columns as channels (frame based).
3 Set Rate options to Enforce single-rate processing.
4 Right-click the block and open HDL Code > HDL Block Properties. Set the

Architecture to Frame Based. The block implements a parallel HDL architecture.
See “Frame-Based Architecture”.

HDL Architecture
To reduce area or increase speed, the FIR Decimator block supports block-level
optimizations.

 FIR Decimation

3-187

Right-click on the block or the subsystem to open the corresponding HDL Properties
dialog box and set optimization properties.

Block Optimizations

To use block-level optimizations to reduce hardware resources, set Architecture to
Fully Serial or Partly Serial. See “HDL Filter Architectures”.

When you specify SerialPartition for a FIR Decimator block, set Filter structure to
Direct form. The Direct form transposed structure is not supported with serial
architectures. Accumulator reuse is not supported for FIR Decimation filters.

To minimize multipliers by replacing them with LUTs and shift registers, use a distributed
arithmetic (DA) filter implementation. See “Distributed Arithmetic for HDL Filters”.

When you select the Distributed Arithmetic (DA) architecture and use the
DALUTPartition and DARadix distributed arithmetic properties, set Filter structure to
Direct form. The Direct form transposed structure is not supported with
distributed arithmetic.

To improve clock speed, use AddPipelineRegisters to use a pipelined adder tree rather
than the default linear adder. This option is supported for Direct form architecture. You
can also specify the number of pipeline stages before and after the multipliers. See “HDL
Filter Architectures”.

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area by
replacing coefficient multipliers with shift-and-add logic. When you choose a fully
parallel filter implementation, you can set CoeffMultipliers to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. See also
CoeffMultipliers.

3 Supported Blocks

3-188

DALUTPartition
Specify distributed arithmetic partial-product LUT partitions as a vector of the sizes
of each partition. The sum of all vector elements must be equal to the filter length.
The maximum size for a partition is 12 taps. Set DALUTPartition to a scalar value
equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

DARadix
Specify how many distributed arithmetic bit sums are computed in parallel. A DA
radix of 8 (2^3) generates a DA implementation that computes three sums at a time.
The default value is 2^1, which generates a fully serial DA implementation. See also
DARadix.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

SerialPartition
Specify partitions for partly serial or cascade-serial filter implementations as a vector
of the lengths of each partition. For a fully serial implementation, set this parameter
to the length of the filter. See also SerialPartition.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 FIR Decimation

3-189

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• You must set Initial conditions to zero. HDL code generation is not supported for

nonzero initial states.
• When you select Dialog parameters, the following fixed-point options are not

supported for HDL code generation:

• Slope and Bias scaling
• CoeffMultipliers options are supported only when using a fully parallel architecture.

When you select a serial architecture, CoeffMultipliers is hidden from the HDL Block
Properties dialog box.

• Frame-based input filters are not supported for:

• Resettable and enabled subsystems
• Complex input signals with complex coefficients. You can use either complex input

signals and real coefficients, or complex coefficients and real input signals.
• Sharing and streaming optimizations

Introduced in R2014a

3 Supported Blocks

3-190

FIR Interpolation
Upsample and filter input signals (HDL Coder)

Description
The FIR Interpolation block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see FIR
Interpolation.

HDL Coder supports Coefficient source options Dialog parameters, Filter object, or
Auto.

HDL Architecture
When you select Fully Serial architecture, the SerialPartition property is set on
the FIR Interpolation Block.

Distributed Arithmetic Support
Distributed Arithmetic properties DALUTPartition and DARadix are supported for the
following filter structures.

Architecture Supported FIR Structures
Distributed Arithmetic (DA) default

AddPipelineRegisters Support
When you use AddPipelineRegisters, registers are placed based on the filter structure.
The pipeline register placement determines the latency.

 FIR Interpolation

3-191

Pipeline Register Placement Latency (clock cycles)
A pipeline register is added between levels
of a tree-based adder.

ceil(log2(PL))-1.
PL is polyphase filter length.

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area by
replacing coefficient multipliers with shift-and-add logic. When you choose a fully
parallel filter implementation, you can set CoeffMultipliers to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. See also
CoeffMultipliers.

DALUTPartition
Specify distributed arithmetic partial-product LUT partitions as a vector of the sizes
of each partition. The sum of all vector elements must be equal to the filter length.
The maximum size for a partition is 12 taps. Set DALUTPartition to a scalar value
equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

DARadix
Specify how many distributed arithmetic bit sums are computed in parallel. A DA
radix of 8 (2^3) generates a DA implementation that computes three sums at a time.
The default value is 2^1, which generates a fully serial DA implementation. See also
DARadix.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

3 Supported Blocks

3-192

SerialPartition
Specify partitions for partly serial or cascade-serial filter implementations as a vector
of the lengths of each partition. For a fully serial implementation, set this parameter
to the length of the filter. See also SerialPartition.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• You must set Initial conditions to zero. HDL code generation is not supported for

nonzero initial states.
• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the following fixed-point options are not

supported for HDL code generation:

• Coefficients: Slope and Bias scaling
• CoeffMultipliers options are supported only when using a fully parallel architecture.

When you select a serial architecture, CoeffMultipliers is hidden from the HDL Block
Properties dialog box.

Introduced in R2014a

 FIR Interpolation

3-193

FIR Rate Conversion HDL Optimized
Upsample, filter, and downsample input signals—optimized for HDL code generation
(HDL Coder)

Description
The FIR Rate Conversion HDL Optimized block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see FIR Rate
Conversion HDL Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2015b

3 Supported Blocks

3-194

Floating Scope
Display signals generated during simulation (HDL Coder)

Description
The Floating Scope block is available with Simulink.

For information about the simulation behavior and block parameters, see Floating Scope.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Floating Scope

3-195

Float Typecast
Typecast a floating-point type to an unsigned integer or vice versa (HDL Coder)

Description
The Float Typecast block is available in the HDL Floating Point Operations library in the
HDL Coder block library. For information about the simulation behavior and ports, see
Float Typecast.

The block casts the underlying bits of the input to the corresponding fixed-point or
floating point representation. The input and output of the block contain the same number
of bits. The block mask, behavior, and output data type changes dynamically depending
on the input data type that you specify.

Input Data Type Output Data Type
single uint32
double ufix64
uint32 single
ufix64 double

The block supports HDL code generation in the Native Floating Point mode. To use
this mode, specify single or uint32 data types as input to the block. With the HDL
Model Checker, you can replace Data Type Conversion blocks that use the Stored
Integer (SI) mode and convert between floating-point and fixed-point data types.

Complex Data Support
This block supports code generation for complex signals.

See Also
• typecast

3 Supported Blocks

3-196

• “Getting Started with HDL Coder Native Floating-Point Support”

Introduced in R2017b

 Float Typecast

3-197

For Each Subsystem
Repeatedly perform algorithm on each element or subarray of input signal and
concatenate results (HDL Coder)

Description
To repeat the same algorithm for each element or subarray of the input signals, use the
For Each Subsystem block. The block reduces simulation time because it processes
individual elements or subarrays of the input signals simultaneously. For information
about the simulation behavior and block parameters, see For Each Subsystem.

By using the For Each block inside the For Each Subsystem, you can specify how to
partition elements of the input signals. The block parameters Partition Dimension and
Partition Width specify the dimension through which to slice the input signal and the
width of each slice respectively. To partition a row vector, specify the Partition
Dimension as 2. To partition a column vector, specify the Partition Dimension as 1. To
learn more about the block parameters, see For Each.

When you generate HDL code for the For Each Subsystem, the code generator uses a
for-generate loop that iterates through elements of the input and output signals. The
for-generate loop improves readability and reduces the number of lines of code, which
can otherwise result in hundreds of lines of code for large vector signals.

Limitations
• You cannot use the For Each Subsystem block as the DUT.
• You cannot partition mask parameters of the For Each Subsystem for HDL code

generation.
• You cannot use a nonzero value for the Partition Offset parameter in the Input

Partition tab of the For Each block for HDL code generation.

3 Supported Blocks

3-198

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

 For Each Subsystem

3-199

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
This block cannot be the DUT, so the block property settings in the Target Specification
tab are ignored.

3 Supported Blocks

3-200

See Also

Topics
“Generate HDL Code for Blocks Inside For Each Subsystem”

Introduced in R2017a

 For Each Subsystem

3-201

Frame Conversion
Specify sampling mode of output signal (HDL Coder)

Description
The Frame Conversion block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Frame
Conversion.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-202

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Frame Conversion

3-203

From
Accept input from Goto block (HDL Coder)

Description
The From block is available with Simulink.

For information about the simulation behavior and block parameters, see From.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-204

Gain
Multiply input by constant (HDL Coder)

Description
The Gain block is available with Simulink.

For information about the simulation behavior and block parameters, see Gain.

Tunable Parameters
You can use a tunable parameter in a Gain block intended for HDL code generation. For
details, see “Generate DUT Ports for Tunable Parameters”.

HDL Architecture
ConstMultiplierOptimizati
on

Description

none(Default) By default, HDL Coder does not perform CSD or FCSD
optimizations. Code generated for the Gain block retains
multiplier operations.

csd When you specify this option, the generated code decreases the
area used by the model while maintaining or increasing clock
speed, using canonical signed digit (CSD) techniques. CSD
replaces multiplier operations with add and subtract operations.

CSD minimizes the number of addition operations required for
constant multiplication by representing binary numbers with a
minimum count of nonzero digits.

 Gain

3-205

ConstMultiplierOptimizati
on

Description

fcsd This option uses factored CSD (FCSD) techniques, which replace
multiplier operations with shift and add/subtract operations on
certain factors of the operands. These factors are generally
prime but can also be a number close to a power of 2, which
favors area reduction. You can achieve a greater area reduction
with FCSD at the cost of decreasing clock speed.

auto When you specify this option, the coder chooses between the
CSD or FCSD optimizations. The coder chooses the optimization
that yields the most area-efficient implementation, based on the
number of adders required. When you specify auto, the coder
does not use multipliers, unless conditions are such that CSD or
FCSD optimizations are not possible (for example, if the design
uses floating-point arithmetic).

HDL Block Properties

General
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-206

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Native Floating Point

Note For certain values of the Gain parameter, native floating point implements the
algorithm differently instead of using multipliers. For example, if you set the Gain
parameter to 1, the generated model uses a wire to pass the input to the output. If you set
the Gain parameter to -1, the generated model shows a Unary Minus block that inverts
the polarity of the input signal. This implementation reduces the latency and resource
usage on the target platform.

You can specify these settings in the Native Floating Point tab for the Gain block.

HandleDenormals
Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

MantissaMultiplyStrategy
Specify how to implement the mantissa multiplication operation during code
generation. By using different settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also “Mantissa Multiplier Strategy”.

 Gain

3-207

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-208

Gamma Corrector
Apply or remove gamma correction (HDL Coder)

Description
The Gamma Corrector block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Gamma
Corrector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2015a

 Gamma Corrector

3-209

General CRC Generator HDL Optimized
Generate CRC code bits and append to input data, optimized for HDL code generation
(HDL Coder)

Description
The General CRC Generator HDL Optimized block is available with Communications
Toolbox.

For information about the simulation behavior and block parameters, see General CRC
Generator HDL Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-210

Introduced in R2014a

 General CRC Generator HDL Optimized

3-211

General CRC Syndrome Detector HDL
Optimized
Detect errors in input data using CRC (HDL Coder)

Description
The General CRC Syndrome Detector HDL Optimized block is available with
Communications Toolbox.

For information about the simulation behavior and block parameters, see General CRC
Syndrome Detector HDL Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-212

Introduced in R2014a

 General CRC Syndrome Detector HDL Optimized

3-213

General Multiplexed Deinterleaver
Restore ordering of symbols using specified-delay shift registers (HDL Coder)

Description
The General Multiplexed Deinterleaver block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see General
Multiplexed Deinterleaver.

HDL Architecture
The implementation for the General Multiplexed Deinterleaver block is shift register
based. If you want to suppress generation of reset logic, set the implementation
parameter ResetType tonone.

When you set ResetType to none, reset is not applied to the shift registers. When
registers are not fully loaded, mismatches between Simulink and the generated code
occur for some number of samples during the initial phase. To avoid spurious test bench
errors, determine the number of samples required to fill the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-214

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Introduced in R2014a

 General Multiplexed Deinterleaver

3-215

General Multiplexed Interleaver
Permute input symbols using set of shift registers with specified delays (HDL Coder)

Description
The General Multiplexed Interleaver block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see General
Multiplexed Interleaver.

HDL Architecture
The implementation for the General Multiplexed Interleaver block is shift register based.
If you want to suppress generation of reset logic, set the implementation parameter
ResetType to'none'.

When you set ResetType to'none', reset is not applied to the shift registers.
Mismatches between Simulink and the generated code occur for some number of samples
during the initial phase, when registers are not fully loaded. To avoid spurious test bench
errors, determine the number of samples required to fill the shift registers. Then, set the
Ignore output data checking (number of samples) option accordingly. (You can use
the IgnoreDataChecking property for this purpose, if you are using the command-line
interface.)

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-216

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Introduced in R2014a

 General Multiplexed Interleaver

3-217

Gold Sequence Generator
Generate Gold sequence (HDL Coder)

Description
The Gold Sequence Generator block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see Gold Sequence
Generator.

This block is implemented as a masked subsystem. It supports the architectures and block
properties associated with a Subsystem.

Introduced in R2018a

3 Supported Blocks

3-218

Goto
Pass block input to From blocks (HDL Coder)

Description
The Goto block is available with Simulink.

For information about the simulation behavior and block parameters, see Goto.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

Introduced in R2014a

 Goto

3-219

Grayscale Closing
Morphological close of grayscale pixel data (HDL Coder)

Description
The Grayscale Closing block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Grayscale
Closing.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-220

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2016a

 Grayscale Closing

3-221

Grayscale Dilation
Morphological dilate of grayscale pixel data (HDL Coder)

Description
The Grayscale Dilation block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Grayscale
Dilation.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-222

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2016a

 Grayscale Dilation

3-223

Grayscale Erosion
Morphological erode of grayscale pixel data (HDL Coder)

Description
The Grayscale Erosion block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Grayscale
Erosion.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-224

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2016a

 Grayscale Erosion

3-225

Grayscale Opening
Morphological open of grayscale pixel data (HDL Coder)

Description
The Grayscale Opening block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Grayscale
Opening.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-226

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2016a

 Grayscale Opening

3-227

Ground
Ground unconnected input port (HDL Coder)

Description
The Ground block is available with Simulink.

For information about the simulation behavior and block parameters, see Ground.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-228

HDL Cosimulation
Cosimulate hardware component by communicating with HDL module instance executing
in HDL simulator (HDL Coder)

Description
The HDL Cosimulation block is available with HDL Verifier.

For information about the simulation behavior and block parameters, see HDL
Cosimulation.

HDL Coder supports HDL code generation for the following HDL Cosimulation blocks:

• HDL Verifier for use with Mentor Graphics® ModelSim®

• HDL Verifier for use with Cadence Incisive®

Each of the HDL Cosimulation blocks cosimulates a hardware component by applying
input signals to, and reading output signals from, an HDL model that executes under an
HDL simulator.

For information about timing, latency, data typing, frame-based processing, and other
issues when setting up an HDL cosimulation, see “Define HDL Cosimulation Block
Interface” (HDL Verifier).

You can use an HDL Cosimulation block with HDL Coder to generate an interface to your
manually written or legacy HDL code. When an HDL Cosimulation block is included in a
model, the coder generates a VHDL or Verilog interface, depending on the selected target
language.

When the target language is VHDL, the generated interface includes:

• An entity definition. The entity defines ports (input, output, and clock) corresponding
in name and data type to the ports configured on the HDL Cosimulation block. Clock
enable and reset ports are also declared.

• An RTL architecture including a component declaration, a component configuration
declaring signals corresponding to signals connected to the HDL Cosimulation ports,
and a component instantiation.

 HDL Cosimulation

3-229

• Port assignment statements as required by the model.

When the target language is Verilog, the generated interface includes:

• A module defining ports (input, output, and clock) corresponding in name and data
type to the ports configured on the HDL Cosimulation block. The module also defines
clock enable and reset ports, and wire declarations corresponding to signals
connected to the HDL Cosimulation ports.

• A module instance.
• Port assignment statements as required by the model.

Before initiating code generation, to check the requirements for using the HDL
Cosimulation block for code generation, select Simulation > Update Diagram.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
For implementation parameter descriptions, see “Customize Black Box or HDL
Cosimulation Interface”.

See Also

Topics
“Generate a Cosimulation Model”

Introduced in R2014a

3 Supported Blocks

3-230

HDL Counter
Free-running or count-limited hardware counter (HDL Coder)

Description
The HDL Counter block is available with Simulink.

For information about the simulation behavior and block parameters, see HDL Counter.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 HDL Counter

3-231

Restrictions
If the bitwidth of the input signal to a HDL Counter exceeds the data type limit, the
generated HDL code can produce incorrect simulation results. To accommodate the
larger bit width, use a larger data type.

Introduced in R2014a

3 Supported Blocks

3-232

HDL FIFO
Stores sequence of input samples in first in, first out (FIFO) register (HDL Coder)

Description
The HDL FIFO block is available with Simulink.

For information about the simulation behavior and block parameters, see HDL FIFO.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 HDL FIFO

3-233

HDL Minimum Resource FFT
FFT— optimized for HDL code generation using minimum hardware resources (HDL
Coder)

Description
The HDL Minimum Resource FFT block is available with DSP System Toolbox.

For information about the DSP System Toolbox simulation behavior and block parameters,
see HDL Minimum Resource FFT.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014b

3 Supported Blocks

3-234

HDL Reciprocal
Calculate reciprocal with Newton-Raphson approximation method (HDL Coder)

Description
The HDL Reciprocal block is available with Simulink.

For information about the simulation behavior and block parameters, see HDL Reciprocal
block in the Simulink documentation.

The HDL Reciprocal block uses the Newton-Raphson iterative method to compute the
reciprocal of the block input. The Newton-Raphson method uses linear approximation to
successively find better approximations to the roots of a real-valued function.

The reciprocal of a real number a is defined as a zero of the function:

f x
x

a() = -
1

HDL Coder chooses an initial estimate in the range
0

0

2
< <x

a as this is the domain of
convergence for the function.

To successively compute the roots of the function, specify the Number of iterations
parameter in the Block Parameters dialog box. The process is repeated as:

x x
f x

f x
x x ax x axi i

i

i
i i i i i+ = -

()

()
= + - = -1

2
2

’
() .()

f x’() is the derivative of the function f x() .

 HDL Reciprocal

3-235

Comparison of simulation behavior of HDL Reciprocal with Math Reciprocal block

Math Reciprocal HDL Reciprocal
Computes the reciprocal as 1/N
by using the HDL divide
operator (/) to implement the
division.

Uses the Newton-Raphson iterative method to compute
an approximate value of reciprocal of the block input.
This approximation can yield different simulation
results compared to the Math Reciprocal block.

To match the simulation results with the Math
Reciprocal block, increase the number of iterations for
the HDL Reciprocal block. However, increasing the
number of iterations increases the number of hardware
resources that your design uses.

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Architecture Additional cycles of
latency

Description

ReciprocalNewton (default) Iterations + 1 Use the multirate
implementation of the iterative
Newton method. Select this
option to optimize area.

The default value for
Iterations is 3.

The recommended value for
Iterations is from 2 through
10. If Iterations is outside
the recommended range, HDL
Coder displays a message.

3 Supported Blocks

3-236

Architecture Additional cycles of
latency

Description

ReciprocalNewtonSingleRate (Iterations * 2) + 1 Use the single rate pipelined
Newton method. Select this
option to optimize speed, or if
you want a single rate
implementation.

The default value for
Iterations is 3.

The recommended value for
Iterations is between 2 and
10. If Iterations is outside
the recommended range, the
coder displays a message.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014b

 HDL Reciprocal

3-237

HDL Streaming FFT
Radix-2 FFT with decimation-in-frequency (DIF) — optimized for HDL code generation
(HDL Coder)

Description
The HDL Streaming FFT block will be removed in a future release. Use the FFT HDL
Optimized block instead.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014b

3 Supported Blocks

3-238

Histogram
Frequency distribution (HDL Coder)

Description
The Histogram block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Histogram.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

 Histogram

3-239

Introduced in R2015a

3 Supported Blocks

3-240

Hit Crossing
Detect crossing point (HDL Coder)

Description
The Hit Crossing block is available with Simulink.

For information about the simulation behavior and block parameters, see Hit Crossing.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restriction
The Hit crossing direction can only be rising or falling.

 Hit Crossing

3-241

Introduced in R2014b

3 Supported Blocks

3-242

IFFT HDL Optimized
Inverse fast Fourier transform—optimized for HDL code generation (HDL Coder)

Description
The IFFT HDL Optimized block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see IFFT HDL
Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 IFFT HDL Optimized

3-243

Restrictions
• If you use the IFFT HDL Optimized block with the State Control block inside an

Enabled Subsystem, the optional reset port is not supported. If you enable the reset
port on the IFFT HDL Optimized block in such a subsystem, the model will error on
Update Diagram.

Introduced in R2014a

3 Supported Blocks

3-244

Image Filter
2-D FIR filtering (HDL Coder)

Description
The Image Filter block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Image Filter.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Image Filter

3-245

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2015a

3 Supported Blocks

3-246

Image Statistics
Mean, variance, and standard deviation (HDL Coder)

Description
The Image Statistics block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Image
Statistics.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2015a

 Image Statistics

3-247

Increment Real World
Increase real world value of signal by one (HDL Coder)

Description
The Increment Real World block is available with Simulink.

For information about the simulation behavior and block parameters, see Increment Real
World.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-248

Increment Stored Integer
Increase stored integer value of signal by one (HDL Coder)

Description
The Increment Stored Integer block is available with Simulink.

For information about the simulation behavior and block parameters, see Increment
Stored Integer.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Increment Stored Integer

3-249

Index Vector
Switch output between different inputs based on value of first input (HDL Coder)

Description
The Index Vector block is a Multiport Switch block with Number of data ports set to 1.
For HDL code generation information, see Multiport Switch.

Introduced in R2014a

3 Supported Blocks

3-250

Inport
Create input port for subsystem or external input (HDL Coder)

Description
The Inport block is available with Simulink.

For information about the simulation behavior and block parameters, see Inport.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
BidirectionalPort

BidirectionalPort
Setting

Description

on Specify the port as bidirectional.

The following requirements apply:

• The port must be in a Subsystem block with black
box implementation.

• There must also be no logic between the
bidirectional port and the corresponding top-level
DUT subsystem port.

For more information, see “Specify Bidirectional
Ports”.

 Inport

3-251

BidirectionalPort
Setting

Description

off (default) Do not specify the port as bidirectional.

Target Specification
IOInterface

Target platform interface type for DUT ports, specified as a character vector. The
IOInterface block property is ignored for Inport and Outport blocks that are not
DUT ports.

To specify valid IOInterface settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step, in
the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 Save the model.

The IOInterface value is saved as an HDL block property of the port.

For example, to view the IOInterface value, if the full path to your DUT port is
hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface')

IOInterfaceMapping
Target platform interface port mapping for DUT ports, specified as a character vector.
The IOInterfaceMapping block property is ignored for Inport and Outport blocks
that are not DUT ports.

To specify valid IOInterfaceMapping settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step, in
the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 In the Bit Range / Address / FPGA Pin column, if you want to change the
default value, enter a target platform interface mapping.

3 Save the model.

The IOInterfaceMapping value is saved as an HDL block property of the port.

3 Supported Blocks

3-252

For example, to view the IOInterfaceMapping value, if the full path to your
DUT port is hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...
 'IOInterfaceMapping')

See Also

Topics
“Save Target Hardware Settings in Model”

Introduced in R2014a

 Inport

3-253

Integer-Input RS Encoder HDL Optimized
Encode data using a Reed-Solomon encoder (HDL Coder)

Description
The Integer-Input RS Encoder HDL Optimized block is available with Communications
Toolbox.

For information about the simulation behavior and block parameters, see Integer-Input
RS Encoder HDL Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-254

Integer-Output RS Decoder HDL Optimized
Decode data using a Reed-Solomon decoder (HDL Coder)

Description
The Integer-Output RS Decoder HDL Optimized block is available with Communications
Toolbox.

For information about the simulation behavior and block parameters, see Integer-Output
RS Decoder HDL Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Integer-Output RS Decoder HDL Optimized

3-255

Restrictions
• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2014a

3 Supported Blocks

3-256

Line Buffer
Store video lines and return neighborhood pixels (HDL Coder)

Description
The Line Buffer block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Line Buffer.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2017b

 Line Buffer

3-257

LMS Filter
Compute output, error, and weights using LMS adaptive algorithm (HDL Coder)

Description
The LMS Filter block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see LMS Filter.

HDL Architecture
By default, the LMS Filter implementation uses a linear sum for the FIR section of the
filter.

The LMS Filter implements a tree summation (which has a shorter critical path) under
the following conditions:

• The LMS Filter is used with real data.
• The word length of the Accumulator W'u data type is at least ceil(log2(filter

length)) bits wider than the word length of the Product W'u data type.
• The Accumulator W'u data type has the same fraction length as the Product W'u data

type.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-258

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Restrictions
• HDL Coder does not support the Normalized LMS algorithm of the LMS Filter.
• The Reset port supports only Boolean and unsigned inputs.
• The Adapt port supports only Boolean inputs.
• Filter length must be greater than or equal to 2.

Introduced in R2014a

 LMS Filter

3-259

Logical Operator
Perform specified logical operation on input (HDL Coder)

Description
The Logical Operator block is available with Simulink.

For information about the simulation behavior and block parameters, see Logical
Operator.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-260

Lookup Table
Map input pixel to output pixel using custom rule (HDL Coder)

Description
The Lookup Table block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Lookup Table.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2015a

 Lookup Table

3-261

LTE Convolutional Decoder
Decode convolutional-encoded samples using Viterbi algorithm (HDL Coder)

Description
The LTE Convolutional Decoder block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see Convolutional
Decoder .

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2017b

3 Supported Blocks

3-262

LTE Convolutional Encoder
Encode binary samples using tailbiting convolutional algorithm (HDL Coder)

Description
The LTE Convolutional Encoder block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see Convolutional
Encoder.

This block is implemented as a masked subsystem. It supports the architectures and block
properties associated with a Subsystem.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2017b

 LTE Convolutional Encoder

3-263

LTE CRC Decoder
Detect errors in input samples using checksum (HDL Coder)

Description
The LTE CRC Decoder block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see CRC Decoder.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2017b

3 Supported Blocks

3-264

LTE CRC Encoder
Generate checksum and append to input sample stream (HDL Coder)

Description
The LTE CRC Encoder block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see CRC Encoder.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2017b

 LTE CRC Encoder

3-265

LTE Turbo Decoder
Decode turbo-encoded samples (HDL Coder)

Description
The LTE Turbo Decoder block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see Turbo Decoder .

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-266

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem or an
Enabled Synchronous Subsystem.

Introduced in R2017b

 LTE Turbo Decoder

3-267

LTE OFDM Demodulator
Demodulate samples using orthogonal frequency-division (HDL Coder)

Description
The LTE OFDM Demodulator block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see OFDM
Demodulator.

This block is implemented as a masked subsystem. It supports the architectures and block
properties associated with a Subsystem.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2018a

3 Supported Blocks

3-268

LTE Turbo Encoder
Encode binary samples using turbo algorithm (HDL Coder)

Description
The LTE Turbo Encoder block is available with LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see Turbo Encoder.

This block is implemented as a masked subsystem. It supports the architectures and block
properties associated with a Subsystem.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2017b

 LTE Turbo Encoder

3-269

M-PSK Demodulator Baseband
Demodulate PSK-modulated data (HDL Coder)

Description
The M-PSK Demodulator Baseband block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see M-PSK
Demodulator Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-270

M-PSK Modulator Baseband
Modulate using M-ary phase shift keying method (HDL Coder)

Description
The M-PSK Modulator Baseband block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see M-PSK
Modulator Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 M-PSK Modulator Baseband

3-271

Magnitude-Angle to Complex
Convert magnitude and/or a phase angle signal to complex signal (HDL Coder)

Description
The Magnitude-Angle to Complex block is available with Simulink.

For information about the simulation behavior and block parameters, see Magnitude-
Angle to Complex.

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Block configuration with additional
latency

Number of additional cycles

Approximation method is CORDIC Number of iterations + 1

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-272

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
The Magnitude-Angle to Complex block supports HDL code generation when you set
Approximation method to CORDIC.

Introduced in R2014a

 Magnitude-Angle to Complex

3-273

Math Function
Perform mathematical function (HDL Coder)

Description
The Math Function block is available with Simulink.

For information about the simulation behavior and block parameters, see Math Function.

HDL Architecture

conj
Architecture Description
ComplexConjugate Compute complex conjugate. See Math Function in the

Simulink documentation.

hermitian
Architecture Description
Hermitian Compute hermitian. See Math Function in the Simulink

documentation.

reciprocal
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

3 Supported Blocks

3-274

Architecture Parameters Additional
cycles of
latency

Description

Math (default)
Reciprocal

None 0 Compute reciprocal
as 1/N, using the
HDL divide (/)
operator to
implement the
division.

ReciprocalRsqrtBasedNewton Iterations Signed input:
Iterations
+ 5

Unsigned
input:
Iterations
+ 3

Use the iterative
Newton method.
Select this option to
optimize area.

The default value
for Iterations is
3.

The recommended
value for
Iterations is
from 2 through 10.
If Iterations is
outside the
recommended
range, HDL Coder
generates a
message.

ReciprocalRsqrtBasedNewtonSingleRate Iterations Signed input:
(Iterations
* 4) + 8

Unsigned
input:
(Iterations
* 4) + 6

Use the single rate
pipelined Newton
method. Select this
option to optimize
speed, or if you
want a single rate
implementation.

The default value
for Iterations is
3.

 Math Function

3-275

Architecture Parameters Additional
cycles of
latency

Description

The recommended
value for
Iterations is
from 2 through 10.
If Iterations is
outside the
recommended
range, the coder
generates a
message.

The Newton-Raphson iterative method:

x x
f x

f x
x axi i

i

i
i i+

= - = -1
2

1 5 0 5
()

’()
(. .)

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate
implement the Newton-Raphson method with:

f x
x

() = -

1
1

2

transpose
Architecture Description
Transpose Compute array transpose. See Math Function in the

Simulink documentation.

3 Supported Blocks

3-276

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

 Math Function

3-277

Complex Data Support
The conj, hermitian, and transpose functions support complex data.

Restrictions
When you use a reciprocal implementation:

• Input must be scalar and must have integer or fixed-point (signed or unsigned) data
type.

• The output must be scalar and have integer or fixed-point (signed or unsigned) data
type.

• Only the Zero rounding mode is supported.
• The Saturate on integer overflow option on the block must be selected.

Introduced in R2014a

3 Supported Blocks

3-278

MATLAB Function
Include MATLAB code in models that generate embeddable C code (HDL Coder)

Description
The MATLAB Function block is available with Simulink.

For information about the simulation behavior and block parameters, see MATLAB
Function in Simulink documentation.

Best Practices
• “Design Guidelines for the MATLAB Function Block”
• “Generate Instantiable Code for Functions”
• “Optimize MATLAB Loops”
• “Pipeline MATLAB Expressions”

HDL Block Properties
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

 MATLAB Function

3-279

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or variables.
Specify the list of variables as a character vector, with spaces separating the
variables.

3 Supported Blocks

3-280

Complex Data Support
This block supports code generation for complex signals.

See also “Complex Data Type Support”.

Tunable Parameter Support
HDL Coder supports both tunable and non-tunable parameters with the following data
types:

• Scalar
• Vector
• Complex
• Structure
• Enumeration

When using tunable parameters with the MATLAB Function block:

• The tunable parameter should be a Simulink.Parameter object with the
StorageClass set to ExportedGlobal.

x = Simulink.Parameter
x.Value = 1
x.CoderInfo.StorageClass = 'ExportedGlobal'

• In the Ports and Data Manager dialog box, select the tunable check box.

For details, see “Generate DUT Ports for Tunable Parameters”.

Restrictions
• If the block contains a System object, block inputs cannot have non-discrete (constant

or Inf) sample time.
• HDL Coder does not support a MATLAB Function that contains the same variable as

the input and output of the function. For example, this MATLAB code is not supported.

function y = myFun(y)
%#codegen

 MATLAB Function

3-281

y = 3 * y;

For the MATLAB language subset supported for HDL code generation from a MATLAB
Function block, see:

• “Supported MATLAB Data Types, Operators, and Control Flow Statements”
• “Persistent Variables and Persistent Array Variables”
• “HDL Code Generation for System Objects”
• “Complex Data Type Support”
• “Fixed-Point Bitwise Functions”
• “Fixed-Point Run-Time Library Functions”

See Also

Topics
“Code Generation from a MATLAB Function Block”
“MATLAB Function Block Design Patterns for HDL”
“Distributed Pipeline Insertion for MATLAB Function Blocks”
“Generate DUT Ports for Tunable Parameters”
“HDL Applications for the MATLAB Function Block”

Introduced in R2014a

3 Supported Blocks

3-282

MATLAB System
Include System object in model (HDL Coder)

Description
You can define a System object and use it in a MATLAB System block for HDL code
generation.

The MATLAB System block is available with Simulink.

For information about the Simulink behavior and block parameters, see MATLAB System.

Tunable Parameter Support
HDL Coder supports tunable parameters with the following data types:

• Numeric
• Fixed point
• Character
• Logical

When using tunable parameters with the MATLAB System block, the tunable parameter
should be a Simulink.Parameter object with the StorageClass set to ExportedGlobal.

x = Simulink.Parameter
x.Value = 1
x.CoderInfo.StorageClass = 'ExportedGlobal'

For details, see “Generate DUT Ports for Tunable Parameters”.

HDL Architecture
This block has a single, default HDL architecture.

 MATLAB System

3-283

HDL Block Properties
If you use a predefined System object, the HDL block properties available are the same as
the properties available for the corresponding block.

By default, the following HDL block properties are available.

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

3 Supported Blocks

3-284

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or variables.
Specify the list of variables as a character vector, with spaces separating the
variables.

Restrictions
• The DUT subsystem must be single-rate.
• Inputs cannot have non-discrete (constant or Inf) sample time.
• The following predefined System objects are supported for code generation when you

use them in the MATLAB System block:

• hdl.RAM
• comm.HDLCRCDetector
• comm.HDLCRCGenerator
• comm.HDLRSDecoder
• comm.HDLRSEncoder
• dsp.DCBlocker
• dsp.HDLComplexToMagnitudeAngle
• dsp.HDLFFT
• dsp.HDLIFFT
• dsp.HDLNCO

• If you use a user-defined System object, it must support HDL code generation. For
information about user-defined System objects and requirements for HDL code
generation, see “HDL Code Generation for System Objects”.

 MATLAB System

3-285

See Also

Topics
“Generate Code for User-Defined System Objects”
“HDL Code Generation for System Objects”

Introduced in R2014a

3 Supported Blocks

3-286

Matrix Concatenate
Concatenate input signals of same data type to create contiguous output signal (HDL
Coder)

Description
The Matrix Concatenate block is the Vector Concatenate block with Mode set to
Multidimensional array. For HDL code generation information, see Vector
Concatenate.

Introduced in R2014a

 Matrix Concatenate

3-287

Matrix Multiply
Concatenate input signals of same data type to create contiguous output signal (HDL
Coder)

Description
The Matrix Multiply block is the Product block with Multiplication parameter set to
Matrix(*).

To learn about the block parameters and simulation behavior, see Product.

HDL Architecture
This block has a single, default Matrix Multiply as the HDL Architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DotProductStrategy
Implement the matrix multiplication by using a tree of adders and multipliers, or use
the Multiply-Accumulate block implementation. The default is Fully Parallel. For
more information, see “DotProductStrategy”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-288

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
The block supports code generation for complex signals.

Example
For an example of how to use the Matrix Multiply block, see “Using Matrix Multiply Block
for HDL Code Generation”.

Restrictions
HDL code generation does not support more than two inputs at the ports of the Matrix
Multiply block.

Introduced in R2018a

 Matrix Multiply

3-289

Matrix Viewer
Display matrices as color images (HDL Coder)

Description
The Matrix Viewer block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Matrix Viewer.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-290

Maximum
Find maximum values in input or sequence of inputs (HDL Coder)

Description
The Maximum block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Maximum.

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description
default
Tree

0 Generates a tree structure of
comparators.

Cascade 1, when block has a single vector
input port.

This implementation is optimized
for latency * area, with medium
speed. See “Cascade Architecture
Best Practices”.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Maximum

3-291

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

InstantiateStages
Generate a VHDL entity or Verilog module for each cascade stage. The default is
off. See also “InstantiateStages”.

SerialPartition
Specify partitions for Cascade-serial implementations as a vector of the lengths of
each partition. The default setting uses the minimum number of stages. See also
“SerialPartition”.

Introduced in R2014a

3 Supported Blocks

3-292

Measure Timing
Measure timing of pixel control bus input (HDL Coder)

Description
The Measure Timing block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Measure
Timing.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2016b

 Measure Timing

3-293

Median Filter
2-D median filtering (HDL Coder)

Description
The Median Filter block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Median Filter.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot use the Median Filter block inside a Resettable Synchronous Subsystem.

3 Supported Blocks

3-294

Introduced in R2015a

 Median Filter

3-295

Memory
Output input from previous time step (HDL Coder)

Description
The Memory block is available with Simulink.

For information about the simulation behavior and block parameters, see Memory.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

3 Supported Blocks

3-296

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Memory

3-297

Sequence Viewer
Display message or events between blocks during simulation (HDL Coder)

Description
The Sequence Viewer block is available with Stateflow.

For information about the simulation behavior and block parameters, see Sequence
Viewer.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

See Also
Chart | State Transition Table | Truth Table

Introduced in R2015b

3 Supported Blocks

3-298

Minimum
Find minimum values in input or sequence of inputs (HDL Coder)

Description
The Minimum block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Minimum.

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description
default
Tree

0 Generates a tree structure of
comparators.

Cascade 1, when block has a single vector
input port.

This implementation is optimized
for latency * area, with medium
speed. See “Cascade Architecture
Best Practices”.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Minimum

3-299

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

InstantiateStages
Generate a VHDL entity or Verilog module for each cascade stage. The default is
off. See also “InstantiateStages”.

SerialPartition
Specify partitions for Cascade-serial implementations as a vector of the lengths of
each partition. The default setting uses the minimum number of stages. See also
“SerialPartition”.

Introduced in R2014a

3 Supported Blocks

3-300

MinMax
Output minimum or maximum input value (HDL Coder)

Description
The MinMax block is available with Simulink.

For information about the simulation behavior and block parameters, see MinMax.

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description
default
Tree

0 Generates a tree structure of
comparators.

Cascade 1, when block has a single vector
input port.

This implementation is optimized
for latency * area, with medium
speed. See “Cascade Architecture
Best Practices”.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 MinMax

3-301

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

InstantiateStages
Generate a VHDL entity or Verilog module for each cascade stage. The default is
off. See also “InstantiateStages”.

SerialPartition
Specify partitions for Cascade-serial implementations as a vector of the lengths of
each partition. The default setting uses the minimum number of stages. See also
“SerialPartition”.

Native Floating Point
LatencyStrategy

To enable this setting, use Tree as the HDL Architecture. With this setting, you can
specify whether to map the blocks in your design to zero, minimum, or maximum
latency for the floating-point operator. The default is inherit. See also “Latency
Considerations with Native Floating Point”.

Introduced in R2014a

3 Supported Blocks

3-302

Model
Include model as block in another model (HDL Coder)

Description
The Model block is available with Simulink. For information about the simulation behavior
and block parameters, see Model.

Generate Comments
If you enter text in the Model Block Properties dialog box Description field, HDL Coder
generates a comment in the HDL code.

Generate Code For Model Arguments
To generate a single Verilog module or VHDL entity for instances of a referenced model
with different model argument values, see “Generate Parameterized Code for Referenced
Models”.

HDL Architecture
Architecture Description
ModelReference (default) When you want to generate code from a referenced

model and any nested models, use the
ModelReference implementation. For more
information, see “How To Generate Code for a
Referenced Model”.

 Model

3-303

Architecture Description
BlackBox Use the BlackBox implementation to instantiate an

HDL wrapper, or black box interface, for legacy or
external HDL code. If you specify a black box
interface, HDL Coder does not attempt to generate
HDL code for the referenced model.

For more information, see “Generate Black Box
Interface for Referenced Model”.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

HDL Block Properties
BalanceDelays

Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-304

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ReferenceModelPrefix
Prefix of the referenced model to insert in the generated code. The code generator
applies this prefix to submodel file names and HDL identifiers. The default prefix is
modelname_ where modelname is the name of the referenced model.

Note

• If you specify an empty prefix, the code generator does not add a prefix to
submodel file names. This can cause HDL compilation errors due to naming
collisions between the models.

• If you use the referenced model as the DUT, the code generator ignores the prefix
that you specify.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Restrictions
• Model block must have default values for the Block parameters.
• Model block cannot be a masked subsystem.
• Multiple model references that refer to the same model must have the same HDL

block properties.
• Referenced models cannot be protected models.
• Hierarchical distributed pipelining must be disabled.

 Model

3-305

HDL Coder cannot move registers across a model reference. Therefore, referenced
models can inhibit these optimizations:

• Distributed pipelining
• Constrained output pipelining
• Streaming

When you have model references and generate HDL code, the generated model,
validation model, and cosimulation model can fail to compile or simulate. To fix
compilation or simulation errors, make sure that the referenced models are loaded or are
on the search path.

The coder can apply the resource sharing optimization to share referenced model
instances. However, you can apply this optimization only when all model references that
point to the same referenced model have the same rate after optimizations and rate
propagation. The model reference final rate may differ from the original rate, but all
model references that point to the same referenced model must have the same final rate.

See Also

Topics
“Model Referencing for HDL Code Generation”
“Generate Black Box Interface for Referenced Model”
“Generate Parameterized Code for Referenced Models”

Introduced in R2014a

3 Supported Blocks

3-306

Model Info
Display model properties and text in model (HDL Coder)

Description
The Model Info block is available with Simulink.

For information about the simulation behavior and block parameters, see Model Info.

Best Practices
When using Model Info blocks in models targeted for HDL code generation, consider
using only ASCII characters in the text that you enter to display on the Model Info block.
If you have non-ASCII characters in the generated HDL code, RTL simulation and
synthesis tools can fail to compile the code.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Model Info

3-307

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-308

Multiply-Accumulate
Perform a multiply-accumulate operation on the inputs (HDL Coder)

Description
The Multiply-Accumulate block is available in the HDL Operations sublibrary in the HDL
Coder block library. To compute the result y, the block adds the dot product of the input
vectors u1 and u2 to the bias k.

y = sum(u1.* u2) + k

By default, the bias k is equal to zero, and the block computes the dot product of the
inputs u1 and u2. The multiplication operation is full precision irrespective of the Output
data type setting. The Output data type and Integer rounding mode settings apply to
the addition operation.

By using the Operation Mode setting, you can specify streaming modes of operation for
the Multiply-Accumulate block. For HDL code generation, when you use the streaming
operation mode, input scalar values to the block. The block has two streaming modes:
Streaming - using Start and End ports and Streaming - using Number of
Samples. When you select these streaming modes, you can specify the control signals to
use with the mode. The control signals specify when to start and end accumulation, and
when is the output valid. To learn about the streaming modes, simulation behavior, and
block parameters, see Multiply-Accumulate.

When you synthesize your design, the generated HDL code for the block maps efficiently
to DSP slices on the FPGA. For DSP mapping, before you generate code, set the Reset
type model parameter to Synchronous when you use a Xilinx device and Asynchronous
when you use an Intel device.

Benefits
With the Multiply-Accumulate block, you can:

• Perform matrix multiplication operations. For example, if you have two matrix inputs
with dimensions N-by-M and M-by-P, you can compute the result by using N-by-P
multiply-accumulate operations in parallel.

 Multiply-Accumulate

3-309

• Replace a sequence of multiplication and addition operations, such as in filter blocks,
and improve the performance on hardware by mapping to DSP slices on the FPGA.
This figure shows how you can use the Multiply-Accumulate block with the
sfir_fixed model.

HDL Architecture
Default: Auto

Auto
This mode selects the Serial architecture by default. When the block is inside a
feedback loop, the code generator cannot use the Serial architecture if the block is
not part of a clock-rate pipelining region and does not have a Delay at the block
output. This error occurs because the Serial architecture introduces additional
latency which cannot be delay balanced inside the feedback loop. When you use the
Auto mode, the code generator switches to the Parallel architecture automatically.

Parallel
For input vectors of size N, this mode uses N Multiply-Add blocks in series to compute
the result. This mode uses a combinatorial implementation and does not introduce
any latency. If you specify the Synthesis tool and Target frequency, since the
adaptive pipelining optimization is enabled, the code generator inserts pipeline
registers for the Multiply-Add blocks. When you synthesize your design, depending on
the input bit widths, this architecture maps up to N DSP slices on the FPGA.

3 Supported Blocks

3-310

Serial
For input vectors of size N, this mode uses a streaming algorithm to implement the
multiply-accumulate operation. This architecture has two implementation modes:

• The default mode uses a local multirate implementation. This implementation
overclocks the shared resources by N and multiplexes the input vectors with a
Multiply-Add block. This implementation introduces an additional latency of one at
the data rate.

• If you have clock-rate pipelining enabled on the model or subsystem that contains
the Multiply-Accumulate block, this architecture uses a single-rate
implementation. This implementation runs the shared resources at the clock-rate
and multiplexes the input vectors with a Multiply-Add block. This implementation
introduces an additional latency of N at the clock rate.

When you synthesize your design, depending on the input bit widths, this architecture
maps to one DSP slice on the FPGA.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
When you use complex signals, this block can generate HDL code, but does not map to
DSP slices.

 Multiply-Accumulate

3-311

Restrictions
• Scalar inputs are not supported for HDL code generation. To generate code for the

block, use vector inputs. With scalar inputs, use the Multiply-Add block.
• Matrix data types are not supported at the block port interfaces. If you have matrix

type signals, use the Matrix Multiply block.
• Streaming modes of operation for the block are not supported inside a Resettable

Subsystem block for HDL code generation.

See Also
Dot Product | Multiply-Add

Topics
“Adaptive Pipelining”
“Clock-Rate Pipelining”

Introduced in R2017b

3 Supported Blocks

3-312

Multiply-Add
Multiply-add combined operation for HDL Coder

Description
The Multiply-Add block is available in the HDL Operations sublibrary in the HDL Coder
block library. For information about the simulation behavior and block parameters, see
Multiply-Add

Hardware Mapping
To map a combined multiply and add or a multiply and subtract operation to a DSP unit in
your target hardware, select the Function setting in the Block Parameters dialog box for
the Multiply-Add block.

To map to a DSP unit, specify the SynthesisTool property for your model.

When you generate HDL code for your model, HDL Coder configures the multiply-add
operation so that your synthesis tool can map to a DSP unit.

Note Some DSP units do not have the multiply-add capability. To see if your hardware
has the multiply-add capability, refer to the documentation for the hardware.

Pipeline Depth
If you have fixed-point inputs to a Multiply-Add block, you can set the PipelineDepth for
the block. For floating-point inputs, HDL Coder ignores the PipelineDepth parameter
and does not insert the pipeline registers.

Polyspace®The following diagrams show different configurations of pipeline registers for
different synthesis tools and PipelineDepth settings. When you specify the
PipelineDepth setting, HDL Coder inserts pipeline registers so that the configuration
maps efficiently to DSP units.

 Multiply-Add

3-313

3 Supported Blocks

3-314

 Multiply-Add

3-315

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
General
PipelineDepth

Number of pipeline stages. The default is auto which means that the coder
determines the number of pipeline stages based on your synthesis tool.

You can enter an integer between 0 and 3. For Altera hardware targets, the maximum
pipeline depth is 2.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less

3 Supported Blocks

3-316

than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to zero, minimum, or maximum
latency for the floating-point operator. The default is inherit. See also “Latency
Considerations with Native Floating Point”.

MantissaMultiplyStrategy
Specify how to implement the mantissa multiplication operation during code
generation. By using different settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also “Mantissa Multiplier Strategy”.

Complex Data Support
This block supports code generation for complex signals.

Restrictions
• When the block has floating-point inputs, HDL Coder ignores the PipelineDepth

parameter and does not insert pipeline registers.
• If the block is in a feedback loop and you do not have sufficient delays at the block

output, the coder reduces the PipelineDepth to prevent delay balancing failure. For
sufficient delays, add Delay blocks at the output of the Multiply-Add block.

• To map the combined multiply-add operation to a DSP unit, the width of the third input
c has to be less than 64 bits for Altera and 48 bits for Xilinx respectively.

• The subtraction operation in the Function setting (a.*b)-c does not map to a DSP
unit in Altera FPGA libraries.

See Also
Multiply-Add

Topics
“Tool and Device”

 Multiply-Add

3-317

Introduced in R2015b

3 Supported Blocks

3-318

Multiport Selector
Distribute arbitrary subsets of input rows or columns to multiple output ports (HDL
Coder)

Description
The Multiport Selector block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Multiport
Selector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Multiport Selector

3-319

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-320

Multiport Switch
Choose between multiple block inputs (HDL Coder)

Description
The Multiport Switch block is available with Simulink.

For information about the simulation behavior and block parameters, see Multiport
Switch.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Multiport Switch

3-321

Native Floating Point
LatencyStrategy

Specify whether to map the blocks in your design to zero, minimum, or maximum
latency for the floating-point operator. The default is inherit. See also “Latency
Considerations with Native Floating Point”.

Complex Data Support
This block supports code generation for complex signals.

Example
You can set Data port order to Specify indices, and enter enumeration values for the
Data port indices. For example, you can connect the Enumerated Constant block to the
Multiport Switch control port and use the enumerated types as data port indices.

Introduced in R2014a

3 Supported Blocks

3-322

Mux
Combine several input signals into vector (HDL Coder)

Description
The Mux block is available with Simulink.

For information about the simulation behavior and block parameters, see Mux.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

 Mux

3-323

Restrictions
Buses are not supported for HDL code generation.

Introduced in R2014a

3 Supported Blocks

3-324

n-D Lookup Table
Approximate N-dimensional function (HDL Coder)

Description
The n-D Lookup Table block is available with Simulink.

For information about the simulation behavior and block parameters, see n-D Lookup
Table.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 n-D Lookup Table

3-325

Complex Data Support
This block supports code generation for complex signals.

Restrictions

MAX 10 Device Settings
If you use Intel MAX 10 device, to map the lookup table to RAM, add this Tcl command
when creating the project in the Quartus tool:

set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE
WITH ERAM"

Required Block Settings
• Number of table dimensions: HDL Coder supports a maximum dimension of 2.
• Breakpoints specification: You can select either Explicit values or Even

spacing.
• Index search method: Select Evenly spaced points.
• Extrapolation method: The coder supports only Clip. The coder does not support

extrapolation beyond the table bounds.
• Interpolation method: The coder supports only Flat or Linear.
• Diagnostic for out-of-range input: Select Error. If you select other options, the

coder displays a warning.
• Use last table value for inputs at or above last breakpoint: Select this check box.
• Require all inputs to have the same data type: Select this check box.
• Fraction: Select Inherit: Inherit via internal rule.
• Integer rounding mode: Select Zero, Floor, or Simplest.

Avoid Generation of Divide Operator
If HDL Coder encounters conditions under which a division operation is required to match
the model simulation behavior, a warning is displayed. The conditions described cause

3 Supported Blocks

3-326

this block to emit a divide operator. When you use this block for HDL code generation,
avoid the following conditions:

• If the block is configured to use interpolation, a division operator is required. To avoid
this requirement, set Interpolation method : to Flat.

• Uneven table spacing. HDL code generation requires the block to use the "Evenly
Spaced Points" algorithm. The block mapping from the input data type to the zero-
based table index in general requires a division. When the breakpoint spacing is an
exact power of 2, this divide is implemented as a shift instead of as a divide. To adjust
the breakpoint spacing, adjust the number of breakpoints in the table, or the
difference between the left and right bounds of the breakpoint range.

Table Data Typing and Sizing
• It is good practice to structure your table such that the spacing between breakpoints

is a power of two. If the breakpoint spacing does not meet this condition, HDL Coder
issues a warning. When the breakpoint spacing is a power of two, you can replace
division operations in the prelookup step with right-shift operations.

• Table data must resolve to a nonfloating-point data type.
• All ports on the block require scalar values.

Introduced in R2014a

 n-D Lookup Table

3-327

NCO
Generate real or complex sinusoidal signals (HDL Coder)

Description
HDL support for the NCO block will be removed in a future release. Use the NCO HDL
Optimized block instead.

Introduced in R2014a

3 Supported Blocks

3-328

NCO HDL Optimized
Generate real or complex sinusoidal signals—optimized for HDL code generation (HDL
Coder)

Description
The NCO HDL Optimized block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see NCO HDL
Optimized.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

LUTRegisterResetType
The reset type of the lookup table output register. Select none to synthesize the
lookup table to a ROM when your target is an FPGA. See also
“LUTRegisterResetType”.

 NCO HDL Optimized

3-329

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• When you set Dither source to Property, the block adds random dither every cycle.

If you generate a validation model with these settings, a warning is displayed. Random
generation of the internal dither can cause mismatches between the models. You can
increase the error margin for the validation comparison to account for the difference.
You can also disable dither or set Dither source to Input port to avoid this issue.

• You cannot use the NCO HDL Optimized block inside a Resettable Synchronous
Subsystem.

Introduced in R2014a

3 Supported Blocks

3-330

Opening
Morphological open of binary pixel data (HDL Coder)

Description
The Opening block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Opening.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

 Opening

3-331

Introduced in R2015a

3 Supported Blocks

3-332

Outport
Create output port for subsystem or external output (HDL Coder)

Description
The Outport block is available with Simulink.

For information about the simulation behavior and block parameters, see Outport.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
BidirectionalPort

BidirectionalPort
Setting

Description

on Specify the port as bidirectional.

The following requirements apply:

• The port must be in a Subsystem block with black
box implementation.

• There must also be no logic between the
bidirectional port and the corresponding top-level
DUT subsystem port.

For more information, see “Specify Bidirectional
Ports”.

 Outport

3-333

BidirectionalPort
Setting

Description

off (default) Do not specify the port as bidirectional.

Target Specification
IOInterface

Target platform interface type for DUT ports, specified as a character vector. The
IOInterface block property is ignored for Inport and Outport blocks that are not
DUT ports.

To specify valid IOInterface settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step, in
the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 Save the model.

The IOInterface value is saved as an HDL block property of the port.

For example, to view the IOInterface value, if the full path to your DUT port is
hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface')

IOInterfaceMapping
Target platform interface port mapping for DUT ports, specified as a character vector.
The IOInterfaceMapping block property is ignored for Inport and Outport blocks
that are not DUT ports.

To specify valid IOInterfaceMapping settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step, in
the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 In the Bit Range / Address / FPGA Pin column, if you want to change the
default value, enter a target platform interface mapping.

3 Save the model.

The IOInterfaceMapping value is saved as an HDL block property of the port.

3 Supported Blocks

3-334

For example, to view the IOInterfaceMapping value, if the full path to your
DUT port is hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...
 'IOInterfaceMapping')

See Also

Topics
“Save Target Hardware Settings in Model”

Introduced in R2014a

 Outport

3-335

Pixel Stream Aligner
Align two streams of pixel data (HDL Coder)

Description
The Pixel Stream Aligner block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Pixel Stream
Aligner.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-336

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2017a

 Pixel Stream Aligner

3-337

Pixel Stream FIFO
Rebuffer input stream to make each image line contiguous valid pixels (HDL Coder)

Description
The Pixel Stream FIFO block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see Pixel Stream
FIFO.

This block is implemented as a masked subsystem. It supports the architectures and block
properties associated with a Subsystem.

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem, or a
Triggered Subsystem.

Introduced in R2018a

3 Supported Blocks

3-338

PN Sequence Generator
Generate pseudonoise sequence (HDL Coder)

Description
The PN Sequence Generator block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see PN Sequence
Generator.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 PN Sequence Generator

3-339

Restrictions
• You can select Input port as the Output mask source on the block. However, in

this case, the Mask input signal must be a vector of data type ufix1.
• If you select Reset on nonzero input, the input to the Rst port must have data type

Boolean.
• Outputs of type double are not supported for HDL code generation. All other output

types (including bit packed outputs) are supported.
• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem
• You cannot generate HDL for this block inside a Triggered Subsystem, if the Use

trigger signal as clock option is selected.

Introduced in R2014a

3 Supported Blocks

3-340

Prelookup
Compute index and fraction for Interpolation Using Prelookup block (HDL Coder)

Description
The Prelookup block is available with Simulink.

For information about the simulation behavior and block parameters, see Prelookup.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• “Required Block Settings” on page 3-342

 Prelookup

3-341

• “Table Data Typing and Sizing” on page 3-342

Required Block Settings
• Breakpoint data: For Source, select Dialog.
• Specification: You can select either Explicit values or Even spacing.
• Index search method: Select Evenly spaced points.
• Extrapolation method: Select Clip.
• Diagnostic for out-of-range input: Select Error.
• Use last breakpoint for input at or above upper limit: Select this check box.
• Breakpoint: For Data Type, select Inherit: Same as input.
• Integer rounding mode: Select Zero, Floor, or Simplest.

Table Data Typing and Sizing
• It is good practice to structure your table such that the spacing between breakpoints

is a power of two. If the breakpoint spacing does not meet this condition, HDL Coder
issues a warning. When the breakpoint spacing is a power of two, you can replace
division operations in the prelookup step with right-shift operations.

• All ports on the block require scalar values.
• The coder permits floating-point data for breakpoints.

Introduced in R2014a

3 Supported Blocks

3-342

Probe
Output signal attributes, including width, dimensionality, sample time, and complex signal
flag (HDL Coder)

Description
The Probe block outputs selected information about the input signal to the block. Use the
Block Parameters of the Probe block to output these input signal attributes:

• Width
• Dimensions
• Sample time and offset
• Flag that indicates whether the signal is complex-valued

The block has one input port. The number of output ports depends on the input signal
attributes that you select for probing. The Probe block is available with Simulink. For
information about the simulation behavior and block parameters, see Probe.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Probe

3-343

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2018b

3 Supported Blocks

3-344

Product
Multiply and divide scalars and nonscalars or multiply and invert matrices (HDL Coder)

Description
The Product block is available with Simulink.

For information about the simulation behavior and block parameters, see Product.

Divide or Reciprocal
For block implementations of the Product block in divide mode or reciprocal mode, see
Divide.

Note In divide mode, Number of Inputs is set to */.

In reciprocal mode, Number of Inputs is set to /.

HDL Architecture
The default Linear implementation generates a chain of N operations (multipliers) for N
inputs.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 Product

3-345

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

MantissaMultiplyStrategy
Specify how to implement the mantissa multiplication operation during code
generation. By using different settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also “Mantissa Multiplier Strategy”.

Complex Data Support
The default (linear) implementation supports complex data.

3 Supported Blocks

3-346

Complex division is not supported. For block implementations of the Product block in
divide mode or reciprocal mode, see Divide.

Introduced in R2014a

 Product

3-347

Product of Elements
Copy or invert one scalar input, or collapse one nonscalar input (HDL Coder)

Description
The Product of Elements block is available with Simulink.

For information about the simulation behavior and block parameters, see Product of
Elements.

HDL Architecture
HDL Coder supports Tree and Cascade architectures for Product or Product of Elements
blocks that have a single vector input with multiple elements.

This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description
Linear (default) 0 Generates a linear chain of

adders to compute the sum of
products.

Tree 0 Generates a tree structure of
adders to compute the sum of
products.

Cascade 1, when block has a single vector
input port.

This implementation optimizes
latency * area and is faster than
the Tree implementation. It
computes partial products and
cascades multipliers.

See “Cascade Architecture Best
Practices”.

3 Supported Blocks

3-348

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. You can use the
Custom strategy with single data types. Double data types are not supported for
the block. See also “LatencyStrategy”.

NFPCustomLatency
If you are using single data types, you can specify a value for NFPCustomLatency.
Before you specify a value, set LatencyStrategy to Custom. HDL Coder adds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

 Product of Elements

3-349

MantissaMultiplyStrategy
Specify how to implement the mantissa multiplication operation during code
generation. By using different settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also “Mantissa Multiplier Strategy”.

Complex Data Support
The default (linear) implementation supports complex data.

Complex division is not supported. For block implementations of the Product block in
divide mode or reciprocal mode, see Divide.

Introduced in R2014a

3 Supported Blocks

3-350

QPSK Demodulator Baseband
Demodulate QPSK-modulated data (HDL Coder)

Description
The QPSK Demodulator Baseband block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see QPSK
Demodulator Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 QPSK Demodulator Baseband

3-351

QPSK Modulator Baseband
Modulate using quaternary phase shift keying method (HDL Coder)

Description
The QPSK Modulator Baseband block is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see QPSK
Modulator Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-352

Raised Cosine Receive Filter
Apply pulse shaping by downsampling signal using raised cosine FIR filter (HDL Coder)

Description
The Raised Cosine Receive Filter is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Raised Cosine
Receive Filter.

This block is a subsystem that contains a FIR Decimation block. You can set HDL
Properties on the subsystem, or you can look under the mask and set HDL Properties
on the filter block. See Subsystem and FIR Decimation for a list of properties.

To save setting changes under the mask, you must break the library link. To break the
library link, select the Raised Cosine Receive Filter block and execute this command.

set_param(gcb,'LinkStatus','inactive')

Introduced in R2015a

 Raised Cosine Receive Filter

3-353

Raised Cosine Transmit Filter
Apply pulse shaping by upsampling signal using raised cosine FIR filter (HDL Coder)

Description
The Raised Cosine Transmit Filter is available with Communications Toolbox.

For information about the simulation behavior and block parameters, see Raised Cosine
Transmit Filter.

This block is a subsystem that contains a FIR Interpolation block. You can set HDL
Properties on the subsystem, or you can look under the mask and set HDL Properties
on the filter block. See Subsystem and FIR Interpolation for a list of properties.

To save setting changes under the mask, you must break the library link. To break the
library link, select the Raised Cosine Transmit Filter block and execute this command.

set_param(gcb,'LinkStatus','inactive')

Introduced in R2015a

3 Supported Blocks

3-354

Rate Transition
Handle transfer of data between blocks operating at different rates (HDL Coder)

Description
The Rate Transition block is available with Simulink.

For information about the simulation behavior and block parameters, see Rate Transition.

Best Practices
When the Rate Transition block is operating at a faster input rate and slower output rate,
it is good practice to follow the Rate Transition block with a unit delay. Doing so prevents
the code generator from inserting an extra bypass register in the HDL code.

See also “Multirate Model Requirements for HDL Code Generation”.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Rate Transition

3-355

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• Sample rate cannot be 0 or Inf for block input or output ports.
• Ensure data integrity during data transfer must be enabled.
• Ensure deterministic data transfer (maximum delay) must be enabled.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-356

Real-Imag to Complex
Convert real and/or imaginary inputs to complex signal (HDL Coder)

Description
The Real-Imag to Complex block is available with Simulink.

For information about the simulation behavior and block parameters, see Real-Imag to
Complex.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Real-Imag to Complex

3-357

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-358

Reciprocal Sqrt
Calculate square root, signed square root, or reciprocal of square root (HDL Coder)

Description
The Reciprocal Sqrt block is available with Simulink.

For information about the simulation behavior and block parameters, see Reciprocal Sqrt.

HDL Code Generation Support
For the Sqrt block with Function set to rSqrt, the code generator supports various
architectures and data types. The sqrtfunction architecture supports code generation
in native floating-point mode. For this architecture, you can specify the
HandleDenormals and LatencyStrategy settings from the Native Floating Point tab
in the HDL Block Properties dialog box.

Architecture Fixed-Point Native
Floating-Point

HandleDenormal
s

LatencyStrat
egy

sqrtfunction — ✓ ✓ ✓
recipsqrtnewton ✓ — — —
recipsqrtnewtons
inglerate

✓ — — —

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

 Reciprocal Sqrt

3-359

Architecture Additional cycles of
latency

Description

SqrtFunction (default) 0 Use a bitset shift/addition algorithm.

The SqrtFunction architecture is
equivalent to the SqrtBitset
architecture with UseMultiplier set
to off.

RecipSqrtNewton Iterations + 2 Use the iterative Newton method.
Select this option to optimize area.

RecipSqrtNewtonSingleRat
e

(Iterations * 4) + 5 Use the single rate pipelined Newton
method. Select this option to optimize
speed, or if you want a single rate
implementation.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

Iterations
Number of iterations for Newton method. The default is 3.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-360

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. You can use the
Custom strategy with single data types. Double data types are not supported for
the block. See also “LatencyStrategy”.

NFPCustomLatency
If you are using single data types, you can specify a value for NFPCustomLatency.
Before you specify a value, set LatencyStrategy to Custom. HDL Coder adds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

Restrictions
• Input must be an unsigned scalar value.
• Output is a fixed-point scalar value.

Introduced in R2014a

 Reciprocal Sqrt

3-361

Rectangular QAM Demodulator Baseband
Demodulate rectangular-QAM-modulated data (HDL Coder)

Description
The Rectangular QAM Demodulator Baseband block is available with Communications
Toolbox.

For information about the simulation behavior and block parameters, see Rectangular
QAM Demodulator Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-362

Restrictions
• The block does not support single or double data types for HDL code generation.
• HDL Coder supports the following Output type options:

• Integer
• Bit is supported only if the Decision Type that you select is Hard decision.

• The coder requires that you set Normalization Method to Minimum Distance
Between Symbols, with a Minimum distance of 2.

• The coder requires that you set Phase offset (rad) to a value that is a multiple of
pi/4.

Introduced in R2014a

 Rectangular QAM Demodulator Baseband

3-363

Rectangular QAM Modulator Baseband
Modulate using rectangular quadrature amplitude modulation (HDL Coder)

Description
The Rectangular QAM Modulator Baseband block is available with Communications
Toolbox.

For information about the simulation behavior and block parameters, see Rectangular
QAM Modulator Baseband.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-364

Restrictions
• The block does not support single or double data types for HDL code generation.
• When Input Type is set to Bit, the block does not support HDL code generation for

input types other than boolean or ufix1.

When the input type is set to Bit, but the block input is actually multibit (uint16, for
example), the Rectangular QAM Modulator Baseband block does not support HDL code
generation.

Introduced in R2014a

 Rectangular QAM Modulator Baseband

3-365

Relational Operator
Perform specified relational operation on inputs (HDL Coder)

Description
The Relational Operator block is available with Simulink.

For information about the simulation behavior and block parameters, see Relational
Operator.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-366

Native Floating Point
LatencyStrategy

Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

Complex Data Support
The ~= and == operators are supported for code generation.

Introduced in R2014a

 Relational Operator

3-367

Relay
Switch output between two constants (HDL Coder)

Description
The Relay block is available with Simulink.

For information about the simulation behavior and block parameters, see Relay.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-368

Repeat
Resample input at higher rate by repeating values (HDL Coder)

Description
The Repeat block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Repeat.

Best Practices
The Repeat block uses fewer hardware resources than the Upsample block. If your
algorithm does not require zero-padding upsampling, use the Repeat block.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Repeat

3-369

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
Input processing set to Columns as channels (frame based) is not supported.

Introduced in R2014a

3 Supported Blocks

3-370

Resettable Synchronous Subsystem
Represent subsystem that has synchronous reset and enable behavior (HDL Coder)

Description
The Resettable Synchronous Subsystem block is available in the HDL Subsystems block
library in HDL Coder. For information about the simulation behavior and block
parameters, see Resettable Synchronous Subsystem.

The Resettable Synchronous Subsystem uses the State Control block in Synchronous
mode with the Resettable Subsystem block. For subsystem blocks with state, the State
Control block in Synchronous mode provides efficient reset and enable simulation
behavior on hardware.

 Resettable Synchronous Subsystem

3-371

The reset port in the Resettable Synchronous Subsystem block adds reset capability to
blocks inside the subsystem that have state. This includes blocks that need not have an
external reset port capability, such as filters, Stateflow Chart, and MATLAB Function
blocks. For HDL code generation, the Reset trigger type of the Reset port is set to
level hold by default.

3 Supported Blocks

3-372

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

 Resettable Synchronous Subsystem

3-373

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
If this block is not the DUT, the block property settings in the Target Specification tab
are ignored.

In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target
specification block property values are saved with the model. If you specify these target

3 Supported Blocks

3-374

specification block property values using hdlset_param, when you open HDL Workflow
Advisor, the fields are populated with the corresponding values.

ProcessorFPGASynchronization
Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core Generation
workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
TestPointMapping

To save this block property on the model, specify the mapping of test point ports to
target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'
TunableParameterMapping

To save this block property on the model, specify the mapping of tunable parameter
ports to target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
IPCoreAdditionalFiles

Verilog or VHDL files for black boxes in your design. Specify the full path to each file,
and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional source
files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

 Resettable Synchronous Subsystem

3-375

IPCoreName
IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core name field. If
this property is set to the default value, the HDL Workflow Advisor constructs the IP
core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion

IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core version field. If
this property is set to the default value, the HDL Workflow Advisor sets the IP core
version.

Values: '' (default) | character vector

Example: '1.3'

Restrictions
• You cannot use the State Control block in Classic mode or remove the State Control

block from the Resettable Synchronous Subsystem block.
• The Reset trigger type of the Reset port inside the subsystem must be set to level

hold.
• A Delay block with nonvirtual bus input signals inside a Resettable Synchronous

Subsystem is not supported if you enable optimizations on the subsystem.
• HDL Coder does not support these blocks inside a Resettable Synchronous Subsystem:

• All RAM blocks or blocks that infer a RAM in the generated HDL code. The RAM
blocks include:

• Single Port RAM
• Simple Dual Port RAM
• Dual Port RAM

3 Supported Blocks

3-376

• Dual Rate Dual Port RAM
• HDL FIFO
• hdl.RAM system object

DSP System Toolbox

• Biquad Filter
• NCO HDL Optimized

Communications Toolbox

• Convolutional Encoder
• Viterbi Decoder
• PN Sequence Generator
• Integer-Output RS Decoder HDL Optimized

Vision HDL Toolbox

• Demosaic Interpolator
• Edge Detector
• Histogram
• Image Filter, Median Filter, Bilateral Filter
• Line Memory
• Binary and Grayscale Morphology blocks
• Pixel Stream FIFO

LTE HDL Toolbox

• Turbo Decoder
• Turbo Encoder
• Convolutional Encoder
• OFDM Demodulator

See Also
Enable | Enabled Synchronous Subsystem | State Control | Synchronous Subsystem

 Resettable Synchronous Subsystem

3-377

Topics
“Resettable Subsystem Support in HDL Coder™”
“Using the State Control block to generate more efficient code with HDL Coder™”
“Synchronous Subsystem Behavior with the State Control Block”

Introduced in R2016b

3 Supported Blocks

3-378

Reshape
Change dimensionality of signal (HDL Coder)

Description
The Reshape block is available with Simulink.

For information about the simulation behavior and block parameters, see Reshape.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

 Reshape

3-379

Introduced in R2014a

3 Supported Blocks

3-380

ROI Selector
Select a region of interest (ROI) from a pixel stream (HDL Coder)

Description
The ROI Selector block is available with Vision HDL Toolbox.

For information about the simulation behavior and block parameters, see ROI Selector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2016a

 ROI Selector

3-381

Rounding Function
Apply rounding function to signal (HDL Coder)

Description
The Rounding Function block is available with Simulink. For information about the
simulation behavior and block parameters, see Rounding Function.

To generate HDL code, use single data types as inputs to the block, and specify the native
floating point mode. In the Configuration Parameters dialog box, on the HDL Code
Generation > Floating Point pane, for Library, select Native Floating Point.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-382

Complex Data Support
This block supports code generation for complex signals.

See Also

Topics
“Getting Started with HDL Coder Native Floating-Point Support”
“Generate Target-Independent HDL Code with Native Floating-Point”

Introduced in R2017a

 Rounding Function

3-383

Sample and Hold
Sample and hold input signal (HDL Coder)

Description
The Sample and Hold block is available with DSP System Toolbox.

For information about the DSP System Toolbox simulation behavior and block parameters,
see Sample and Hold.

HDL code for the Sample and Hold block is generated as a Triggered Subsystem. Similar
restrictions apply to both blocks.

HDL Block Properties
For HDL block property descriptions, see “HDL Block Properties: General”.

Best Practices
When using the Sample and Hold block in models targeted for HDL code generation,
consider the following:

• For synthesis results to match Simulink results, drive the trigger port with registered
logic (with a synchronous clock) on the FPGA.

• It is good practice to put a unit delay on the output signal. Doing so prevents the code
generator from inserting extra bypass registers in the HDL code.

• The use of triggered subsystems, such as the Sample and Hold block, can affect
synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of triggered

subsystem instances.

3 Supported Blocks

3-384

Restrictions
The Sample and Hold block must meet the following conditions:

• The DUT (i.e., the top-level subsystem for which code is generated) must not be the
Sample and Hold block.

• The trigger signal must be a scalar.
• The data type of the trigger signal must be either boolean or ufix1.
• The output of the Sample and Hold block must have an initial value of 0.
• The input, output, and trigger signal of the Sample and Hold block must run at the

same rate. If one of the input or the trigger signals is an output of a Signal Builder
block, see “Using the Signal Builder Block” on page 3-454 for how to match rates.

Introduced in R2014b

 Sample and Hold

3-385

Saturation
Limit range of signal (HDL Coder)

Description
The Saturation block is available with Simulink.

For information about the simulation behavior and block parameters, see Saturation.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

3 Supported Blocks

3-386

Saturation Dynamic
Bound range of input (HDL Coder)

Description
The Saturation Dynamic block is available with Simulink.

For information about the simulation behavior and block parameters, see Saturation
Dynamic.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014a

 Saturation Dynamic

3-387

Scope
Display signals generated during simulation (HDL Coder)

Description
The Scope block is available with Simulink.

For information about the simulation behavior and block parameters, see Scope.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-388

Selector
Select input elements from vector, matrix, or multidimensional signal (HDL Coder)

Description
The Selector block is available with Simulink.

For information about the simulation behavior and block parameters, see Selector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Selector

3-389

Native Floating Point
LatencyStrategy

Specify whether to map the blocks in your design to zero, minimum, or maximum
latency for the floating-point operator. The default is inherit. See also “Latency
Considerations with Native Floating Point”.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-390

Serializer1D
Convert vector signal to scalar or smaller vectors (HDL Coder)

Description
The Serializer1D block is available with Simulink.

For information about the simulation behavior and block parameters, see Serializer1D.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Introduced in R2014b

 Serializer1D

3-391

Shift Arithmetic
Shift bits or binary point of signal (HDL Coder)

Description
The Shift Arithmetic block is available with Simulink.

For information about the simulation behavior and block parameters, see Shift Arithmetic.

You can generate HDL code when Bits to shift: Source is Dialog or Input port.

HDL Architecture
The generated VHDL code uses the shift_right function and sll operator.

The generated Verilog code uses the >>> and <<< shift operators.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-392

Complex Data Support
This block supports code generation for complex signals.

Restrictions
When Bits to shift: Source is Input port, binary point shifting is not supported.

Introduced in R2014a

 Shift Arithmetic

3-393

Sign
Indicate sign of input (HDL Coder)

Description
The Sign block is available with Simulink.

For information about the simulation behavior and block parameters, see Sign.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

3 Supported Blocks

3-394

Introduced in R2014a

 Sign

3-395

Signal Conversion
Convert signal to new type without altering signal values (HDL Coder)

Description
The Signal Conversion block is available with Simulink.

For information about the simulation behavior and block parameters, see Signal
Conversion.

HDL Architecture
This block has a pass-through implementation.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-396

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Signal Conversion

3-397

Signal Specification
Specify desired dimensions, sample time, data type, numeric type, and other attributes of
signal (HDL Coder)

Description
The Signal Specification block is available with Simulink.

For information about the simulation behavior and block parameters, see Signal
Specification.

HDL Architecture
This block has a pass-through implementation.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-398

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Signal Specification

3-399

Simple Dual Port RAM
Dual port RAM with single output port (HDL Coder)

Description
The Simple Dual Port RAM block is available with Simulink.

For information about the simulation behavior and block parameters, see Simple Dual
Port RAM.

HDL Architecture
This block has a single, default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language file name extension.

RAM Initialization
Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable
The HDL block property, RAMArchitecture, enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

3 Supported Blocks

3-400

• WithClockEnable (default): Generates RAM using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

• WithoutClockEnable: Generates RAM without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAM with a clock enable. If your synthesis tool does not
support RAM structures with a clock enable, and cannot map your generated HDL code to
FPGA RAM resources, set RAMArchitecture to WithoutClockEnable.

To learn how to generate RAM without clock enables for your design, see the Getting
Started with RAM and ROM example. To open the example, at the command prompt,
enter:

hdlcoderramrom

RAM Inference Limitations
If you use RAM blocks to perform concurrent read and write operations, verify the read-
during-write behavior in hardware. The read-during-write behavior of the RAM blocks in
Simulink matches that of the generated behavioral HDL code. However, if a synthesis tool
does not follow the same behavior during RAM inference, it causes the read-during-write
behavior in hardware to differ from the behavior of the Simulink model or generated HDL
code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 3-400.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 Simple Dual Port RAM

3-401

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-402

Simple Dual Port RAM System
Dual port RAM with single output port and ability to specify initial value (HDL Coder)

Description
The Simple Dual Port RAM System block is available in the HDL RAMs sublibrary in the
HDL Coder block library. For information about the simulation behavior and block
parameters, see Dual Port RAM System, Simple Dual Port RAM System, Single Port RAM
System.

The Simple Dual Port RAM System block is a MATLAB System block that uses the
hdl.RAM System object. The simulation and HDL code generation behavior of the block is
similar to the Simple Dual Port RAM block. In addition, you can:

• Specify an initial value for the RAM. Double-click the block to open the Block
Parameters dialog box, and then enter a value for Specify the RAM initial value.

• Obtain faster simulation results when you use these blocks in your Simulink model.
• Create parallel RAM banks when you use vector data by leveraging the hdl.RAM

System object functionality.
• Obtain higher performance and support for large data memories.

Note When you build the FPGA bitstream for the RAM, the global reset logic does not
reset the RAM contents.To reset the RAM, make sure that you implement the reset logic.

HDL Architecture
The block has a MATLABSystem architecture which indicates that the block
implementation uses the hdl.RAM System object.

 Simple Dual Port RAM System

3-403

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

See Also
System Objects
hdl.RAM

Blocks
Dual Port RAM System | Single Port RAM System

Topics
“HDL Code Generation from hdl.RAM System Object”
“Getting Started with RAM and ROM in Simulink®”
“Implement RAM Using MATLAB Code”
“HDL Code Generation for System Objects”

Introduced in R2014a

3 Supported Blocks

3-404

Sine
Implement fixed-point sine wave using lookup table approach that exploits quarter wave
symmetry (HDL Coder)

Description
The Sine block is available with Simulink.

For information about the simulation behavior and block parameters, see Sine, Cosine.

HDL Architecture
The HDL code implements Sine using the quarter-wave lookup table you specify in the
Simulink block parameters.

To avoid generating a division operator (/) in the HDL code, for Number of data points
for lookup table, enter (2^n)+1. n is an integer.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Sine

3-405

Limitations
If you use Intel MAX 10 device, to map the lookup table to RAM, add this Tcl command
when creating the project in the Quartus tool:

set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE
WITH ERAM"

See Also
Cosine | Cosine HDL Optimized | Sine HDL Optimized

Introduced in R2014a

3 Supported Blocks

3-406

Sine HDL Optimized
Implement fixed-point sine wave optimized for HDL code generation

Description
The Sine HDL Optimized block is available in the Lookup Tables library in HDL Coder. For
information about the simulation behavior and block parameters, see Sine HDL
Optimized.

For the most efficient HDL implementation, configure the block with an exact power of
two as the number of elements. In the Block Parameters dialog box, for Number of data
points, specify an integer that is an exact power of two. By default, the Number of data
points is 64.

When you specify a power of two for the Number of data points, the lookup tables
precede a register without reset after HDL code generation. The combination of the
lookup table block and register without reset map efficiently to RAM on the target device.

HDL Architecture
The HDL code implements the Sine HDL Optimized block by using the quarter-wave
lookup table that you specify in the Simulink block parameters.

To generate code that is optimized for area and speed, for Number of data points, enter
(2^n). n is an integer.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 Sine HDL Optimized

3-407

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

See Also
Cosine | Cosine HDL Optimized | Sine

Introduced in R2016b

3 Supported Blocks

3-408

Sine Wave
Generate continuous or discrete sine wave (HDL Coder)

Description
The Sine Wave block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Sine Wave.

HDL Architecture
This block has a single, default HDL architecture.

Restrictions
For HDL code generation, you must select the following Sine Wave block settings:

• Computation method: Table lookup
• Sample mode: Discrete

Output:

• The output port cannot have data types single or double.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Sine Wave

3-409

Single Port RAM
Single port RAM (HDL Coder)

Description
The Single Port RAM block is available with Simulink.

For information about the simulation behavior and block parameters, see Single Port
RAM.

HDL Architecture
This block has a single, default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language file name extension.

RAM Initialization
Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable
The HDL block property, RAMArchitecture, enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

3 Supported Blocks

3-410

• WithClockEnable (default): Generates RAM using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

• WithoutClockEnable: Generates RAM without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAM with a clock enable. If your synthesis tool does not
support RAM structures with a clock enable, and cannot map your generated HDL code to
FPGA RAM resources, set RAMArchitecture to WithoutClockEnable.

To learn how to generate RAM without clock enables for your design, see the Getting
Started with RAM and ROM example. To open the example, at the command prompt,
enter:

hdlcoderramrom

RAM Inference Limitations
Depending on your synthesis tool and target device, the setting of Output data during
write can affect RAM inference.

If you use RAM blocks to perform concurrent read and write operations, verify the read-
during-write behavior in hardware. The read-during-write behavior of the RAM blocks in
Simulink matches that of the generated behavioral HDL code. However, if a synthesis tool
does not follow the same behavior during RAM inference, it causes the read-during-write
behavior in hardware to differ from the behavior of the Simulink model or generated HDL
code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 3-410.

 Single Port RAM

3-411

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-412

Single Port RAM System
Single port RAM that can read from and write to memory locations with ability to specify
initial value (HDL Coder)

Description
The Single Port RAM System block is available in the HDL RAMs sublibrary in the HDL
Coder block library. For information about the simulation behavior and block parameters,
see Dual Port RAM System, Simple Dual Port RAM System, Single Port RAM System.

The Single Port RAM System block is a MATLAB System block that uses the hdl.RAM
System object. The simulation and HDL code generation behavior of the block is similar to
the Single Port RAM. In addition, you can:

• Specify an initial value for the RAM. Double-click the block to open the Block
Parameters dialog box, and then enter a value for Specify the RAM initial value.

• Obtain faster simulation results when you use these blocks in your Simulink model.
• Create parallel RAM banks when you use vector data by leveraging the hdl.RAM

System object functionality.
• Obtain higher performance and support for large data memories.

Note When you build the FPGA bitstream for the RAM, the global reset logic does not
reset the RAM contents.To reset the RAM, make sure that you implement the reset logic.

HDL Architecture
The block has a MATLABSystem architecture which indicates that the block
implementation uses the hdl.RAM System object.

 Single Port RAM System

3-413

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

See Also
System Objects
hdl.RAM

Blocks
Dual Port RAM System | Simple Dual Port RAM

Topics
“HDL Code Generation from hdl.RAM System Object”
“Getting Started with RAM and ROM in Simulink®”
“Implement RAM Using MATLAB Code”
“HDL Code Generation for System Objects”

Introduced in R2017b

3 Supported Blocks

3-414

Spectrum Analyzer
Display frequency spectrum of time-domain signals (HDL Coder)

Description
The Spectrum Analyzer block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Spectrum
Analyzer.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Spectrum Analyzer

3-415

Sqrt
Calculate square root, signed square root, or reciprocal of square root (HDL Coder)

Description
The Sqrt block is available with Simulink.

For information about the simulation behavior and block parameters, see Sqrt.

HDL Code Generation Support
For the Sqrt block with Function set to sqrt, the code generator supports various
architectures and data types. The sqrtfunction architecture supports code generation
in native floating-point mode. For this architecture, you can specify the
HandleDenormals and LatencyStrategy settings from the Native Floating Point tab
in the HDL Block Properties dialog box.

Architecture Fixed-Point Native
Floating-Point

HandleDenormal
s

LatencyStrat
egy

sqrtfunction ✓ ✓ ✓ ✓
sqrtnewton ✓ — — —
sqrtnewtonsingle
rate

✓ — — —

sqrtbitset ✓ — — —

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

3 Supported Blocks

3-416

Architecture Parameter Additional cycles
of latency

Description

SqrtFunction
(default)

None 0 Use a bitset shift/addition algorithm.

The SqrtFunction architecture is
equivalent to the SqrtBitset
architecture with UseMultiplier set to
off.

SqrtBitset UseMultipli
er

0 Algorithm depends on the
UseMultiplier setting:

• off (default): Use a bitset shift/
addition algorithm.

• on: Use a multiply/add algorithm.
SqrtNewton Iterations Iterations + 3 Use the iterative Newton method. Select

this option to optimize area.

The default value for Iterations is 3.

The recommended value for Iterations
is from 2 through 10. If Iterations is
outside the recommended range, HDL
Coder generates a message.

SqrtNewtonSin
gleRate

Iterations (Iterations * 4)
+ 6

Use the single rate pipelined Newton
method. Select this option to optimize
speed, or if you want a single rate
implementation.

The default value for Iterations is 3.

The recommended value for Iterations
is from 2 through 10. If Iterations is
outside the recommended range, the coder
generates a message.

 Sqrt

3-417

HDL Block Properties
General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

Iterations
Number of iterations for SqrtNewton or SqrtNewtonSingleRate implementation.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

UseMultiplier
Select algorithm for SqrtBitset implementation. The default is off.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. You can use the
Custom strategy with single data types. Double data types are not supported for
the block. See also “LatencyStrategy”.

NFPCustomLatency
If you are using single data types, you can specify a value for NFPCustomLatency.
Before you specify a value, set LatencyStrategy to Custom. HDL Coder adds latency

3 Supported Blocks

3-418

equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

Restrictions
• Input must be an unsigned scalar value.
• Output is a fixed-point scalar value.

Introduced in R2014a

 Sqrt

3-419

State Control
Properties and restrictions for HDL code generation

Description
The State Control block is available in the HDL Subsystems Block Library. For information
about block parameters and simulation behavior, see State Control in the Simulink
documentation.

Use the State Control block to toggle subsystem behavior between the default Simulink
simulation behavior and the synchronous hardware simulation behavior.

• For default Simulink simulation behavior, set State control to Classic.
• For synchronous hardware simulation behavior, set State control to Synchronous.

The Synchronous mode of the State Control block:

• Provides efficient reset and enable simulation behavior on hardware.
• Generates cleaner HDL code and uses fewer hardware resources.

See “Synchronous Subsystem Behavior with the State Control Block”.

HDL Architecture
This block has a single, default HDL architecture. HDL Coder does not generate HDL
code specific to the State Control block. How you set the State Control block affects other
blocks inside the subsystem that have state.

Restrictions
• You cannot have subsystems with synchronous semantics inside conditional

subsystems that use classic semantics.
• You cannot flatten a synchronous subsystem up into a classic system.

3 Supported Blocks

3-420

For the State Control block in Synchronous mode-

Supported block modes:

• Delay block: When you have an external reset port, set the External reset to Level
hold.

• Enabled Subsystem: You cannot use the optional reset port for blocks inside the
subsystem.

• Stateflow Chart: Set the State Machine Type to Moore.
• MATLAB Function block:

• You cannot have System Objects inside the MATLAB Function block.
• If you use nondirect feedthrough in a MATLAB Function block, do not program the

outputs to rely on inputs or updated persistent variables. The MATLAB Function
block must drive the outputs from persistent variables.

To use nondirect feedthrough, in the Ports and Data Manager, clear the Allow
direct feedthrough check box. See “Use Nondirect Feedthrough in a MATLAB
Function Block” (Simulink).

Unsupported blocks:

• Triggered Subsystem
• LMS Filter
• HDL Minimum Resource FFT
• DC Blocker
• PN Sequence Generator
• Convolutional Interleaver and Convolutional Deinterleaver
• General Multiplexed Interleaver and General Multiplexed Deinterleaver
• Convolutional Encoder and Viterbi Decoder
• Sample and Hold

See Also
Enable | Enabled Synchronous Subsystem | Resettable Synchronous Subsystem

 State Control

3-421

Topics
“Resettable Subsystem Support in HDL Coder™”
“Using the State Control block to generate more efficient code with HDL Coder™”
“Synchronous Subsystem Behavior with the State Control Block”

Introduced in R2015a

3 Supported Blocks

3-422

State Transition Table
Represent modal logic in tabular format (HDL Coder)

Description
The State Transition Table block is available with Stateflow.

For information about the simulation behavior and block parameters, see State Transition
Table.

Tunable Parameters
You can use a tunable parameter in a State Transition Table intended for HDL code
generation. For details, see “Generate DUT Ports for Tunable Parameters”.

HDL Architecture
This block has a single, default HDL architecture.

Active State Output
To generate an output port in the HDL code that shows the active state, select Create
output port for monitoring in the Properties window of the chart. The output is an
enumerated data type. See “Simplify Stateflow Charts by Incorporating Active State
Output” (Stateflow).

HDL Block Properties
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

 State Transition Table

3-423

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

3 Supported Blocks

3-424

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or variables.
Specify the list of variables as a character vector, with spaces separating the
variables.

See Also
Chart | Sequence Viewer | Truth Table

Introduced in R2014a

 State Transition Table

3-425

Stop Simulation
Stop simulation when input is nonzero (HDL Coder)

Description
The Stop Simulation block is available with Simulink.

For information about the simulation behavior and block parameters, see Stop Simulation.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-426

Subsystem
Represent system within another system (HDL Coder)

Description
The Subsystem block is available with Simulink.

For information about the simulation behavior and block parameters, see Subsystem.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

 Subsystem

3-427

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-428

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
If this block is not the DUT, the block property settings in the Target Specification tab
are ignored.

In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target
specification block property values are saved with the model. If you specify these target
specification block property values using hdlset_param, when you open HDL Workflow
Advisor, the fields are populated with the corresponding values.

ProcessorFPGASynchronization
Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core Generation
workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
TestPointMapping

To save this block property on the model, specify the mapping of test point ports to
target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'

 Subsystem

3-429

TunableParameterMapping
To save this block property on the model, specify the mapping of tunable parameter
ports to target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
IPCoreAdditionalFiles

Verilog or VHDL files for black boxes in your design. Specify the full path to each file,
and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional source
files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName
IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core name field. If
this property is set to the default value, the HDL Workflow Advisor constructs the IP
core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion

IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core version field. If
this property is set to the default value, the HDL Workflow Advisor sets the IP core
version.

Values: '' (default) | character vector

Example: '1.3'

3 Supported Blocks

3-430

Restrictions
If your DUT is a masked subsystem, you can generate code only if it is at the top level of
the model.

See Also

Topics
“External Component Interfaces”
“Generate Black Box Interface for Subsystem”

Introduced in R2014a

 Subsystem

3-431

Subtract
Add or subtract inputs (HDL Coder)

Description
The Subtract block is available with Simulink.

For information about the simulation behavior and block parameters, see Subtract.

HDL Architecture
The default Linear implementation generates a chain of N operations (adders) for N
inputs.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-432

Native Floating Point
LatencyStrategy

Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

Complex Data Support
The default Linear implementation supports complex data.

Introduced in R2014a

 Subtract

3-433

Sum
Add or subtract inputs (HDL Coder)

Description
The Sum block is available with Simulink.

For information about the simulation behavior and block parameters, see Sum.

HDL Architecture
The default Linear implementation generates a chain of N operations (adders) for N
inputs.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-434

Native Floating Point
LatencyStrategy

Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

NFPCustomLatency
Before you specify a value, set LatencyStrategy to Custom. HDL Coderadds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

Complex Data Support
The default Linear implementation supports complex data.

Introduced in R2014a

 Sum

3-435

Sum of Elements
Add or subtract inputs (HDL Coder)

Description
The Sum of Elements block is available with Simulink.

For information about the simulation behavior and block parameters, see Sum of
Elements.

HDL Architecture
HDL Coder supports Tree and Cascade architectures for Sum of Elements blocks that
have a single vector input with multiple elements.

This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Architecture Additional cycles of
latency

Description

Linear 0 Generates a linear chain of adders to
compute the sum of products.

Tree 0 Generates a tree structure of adders
to compute the sum of products.

Cascade 1, when block has a single
vector input port.

This implementation optimizes
latency * area and is faster than the
Tree implementation. It computes
partial sums and cascades adders.

See “Cascade Architecture Best
Practices”.

3 Supported Blocks

3-436

Note To use the LatencyStrategy setting in the Native Floating Point tab of the HDL
Block Properties dialog box, specify Linear or Tree as the HDL Architecture.

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Native Floating Point
LatencyStrategy

Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. You can use the
Custom strategy with single data types. Double data types are not supported for
the block. See also “LatencyStrategy”.

NFPCustomLatency
If you are using single data types, you can specify a value for NFPCustomLatency.
Before you specify a value, set LatencyStrategy to Custom. HDL Coder adds latency
equal to the value that you specify for the NFPCustomLatency setting. See also
“LatencyStrategy”.

 Sum of Elements

3-437

Complex Data Support
The Linear implementation supports complex data.

The Tree implementation supports complex data with + for the List of signs block
parameter. With native floating point support, the Tree implementation supports
complex data with both + and - for List of signs.

Introduced in R2014a

3 Supported Blocks

3-438

Switch
Switch output between first input and third input based on value of second input (HDL
Coder)

Description
The Switch block is available with Simulink.

For information about the simulation behavior and block parameters, see Switch.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Switch

3-439

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

3 Supported Blocks

3-440

Synchronous Subsystem
Represent subsystem that has synchronous reset and enable behavior (HDL Coder)

Description
The Synchronous Subsystem block is available with Simulink.

For information about the simulation behavior and block parameters, see Synchronous
Subsystem.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

 Synchronous Subsystem

3-441

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-442

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
If this block is not the DUT, the block property settings in the Target Specification tab
are ignored.

In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target
specification block property values are saved with the model. If you specify these target
specification block property values using hdlset_param, when you open HDL Workflow
Advisor, the fields are populated with the corresponding values.

ProcessorFPGASynchronization
Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core Generation
workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
TestPointMapping

To save this block property on the model, specify the mapping of test point ports to
target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'

 Synchronous Subsystem

3-443

TunableParameterMapping
To save this block property on the model, specify the mapping of tunable parameter
ports to target platform interfaces in the Set Target Interface task of the IP Core
Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
IPCoreAdditionalFiles

Verilog or VHDL files for black boxes in your design. Specify the full path to each file,
and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional source
files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName
IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core name field. If
this property is set to the default value, the HDL Workflow Advisor constructs the IP
core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion

IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core version field. If
this property is set to the default value, the HDL Workflow Advisor sets the IP core
version.

Values: '' (default) | character vector

Example: '1.3'

3 Supported Blocks

3-444

Restrictions
If your DUT is a masked subsystem, you can generate code only if it is at the top level of
the model.

See Also
Enable | Enabled Synchronous Subsystem | Resettable Synchronous Subsystem | State
Control

Topics
“Resettable Subsystem Support in HDL Coder™”
“Using the State Control block to generate more efficient code with HDL Coder™”
“Synchronous Subsystem Behavior with the State Control Block”

Introduced in R2016a

 Synchronous Subsystem

3-445

Tapped Delay
Delay scalar signal multiple sample periods and output the delayed versions (HDL Coder)

Description
The Tapped Delay block is available with Simulink.

For information about the simulation behavior and block parameters, see Tapped Delay.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

3 Supported Blocks

3-446

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Tapped Delay

3-447

Terminator
Terminate unconnected output port (HDL Coder)

Description
The Terminator block is available with Simulink.

For information about the simulation behavior and block parameters, see Terminator.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-448

Time Scope
Display time-domain signals (HDL Coder)

Description
The Time Scope block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Time Scope.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 Time Scope

3-449

To File
Write data to file (HDL Coder)

Description
The To File block is available with Simulink.

For information about the simulation behavior and block parameters, see To File.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-450

To VCD File
Generate value change dump (VCD) file (HDL Coder)

Description
The To VCD File block is available with HDL Verifier.

For information about the simulation behavior and block parameters, see To VCD File.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 To VCD File

3-451

To Workspace
Write data to MATLAB workspace (HDL Coder)

Description
The To Workspace block is available with Simulink.

For information about the simulation behavior and block parameters, see To Workspace.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-452

Trigger
Add trigger port to model or subsystem (HDL Coder)

Description
The Trigger block is available with Simulink.

For information about the simulation behavior and block parameters, see Trigger.

HDL Architecture
This block has a single, default HDL architecture.

See Also
Triggered Subsystem

Introduced in R2014a

 Trigger

3-453

Triggered Subsystem
Represent subsystem whose execution is triggered by external input (HDL Coder)

Description
A triggered subsystem is a subsystem that receives a control signal via a Trigger block.
The triggered subsystem executes for one cycle each time a trigger event occurs. For
detailed information on how to define trigger events and configure triggered subsystems,
see “Using Triggered Subsystems” (Simulink).

Best Practices
When using triggered subsystems in models targeted for HDL code generation, consider
the following:

• For synthesis results to match Simulink results, drive the trigger port with registered
logic (with a synchronous clock) on the FPGA.

• It is good practice to put unit delays on Triggered Subsystem output signals. Doing so
prevents the code generator from inserting extra bypass registers in the HDL code.

• The use of triggered subsystems can affect synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of triggered

subsystem instances and the number of output ports per subsystem.

Using the Signal Builder Block
When you connect outputs from a Signal Builder block to a triggered subsystem, you
might need to use a Rate Transition block. To run all triggered subsystem ports at the
same rate:

• If the trigger source is a Signal Builder block, but the other triggered subsystem
inputs come from other sources, insert a Rate Transition block into the signal path
before the trigger input.

3 Supported Blocks

3-454

• If all inputs (including the trigger) come from a Signal Builder block, they have the
same rate, so special action is not required.

Using the Trigger as Clock
You can generate code that uses the trigger signal as a clock with the TriggerAsClock
property. See “Use Trigger As Clock in Triggered Subsystems”.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

 Triggered Subsystem

3-455

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

3 Supported Blocks

3-456

Target Specification
This block cannot be the DUT, so the block property settings in the Target Specification
tab are ignored.

Restrictions
HDL Coder supports HDL code generation for triggered subsystems that meet the
following conditions:

• The triggered subsystem is not the DUT.
• The subsystem is not both triggered and enabled.
• The trigger signal is a scalar.
• The data type of the trigger signal is either boolean or ufix1.
• Outputs of the triggered subsystem have an initial value of 0.
• All inputs and outputs of the triggered subsystem (including the trigger signal) run at

the same rate. (See “Using the Signal Builder Block” on page 3-454 For information
about a special case.)

• The Show output port parameter of the Trigger block is set to Off.
• If the DUT contains the following blocks, RAMArchitecture is set to

WithClockEnable:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM

• The triggered subsystem does not contain the following blocks:

• Discrete-Time Integrator
• CIC Decimation
• CIC Interpolation
• FIR Decimation
• FIR Interpolation
• Downsample
• Upsample

 Triggered Subsystem

3-457

• HDL Cosimulation blocks for HDL Verifier
• Rate Transition
• Pixel Stream FIFO (Vision HDL Toolbox)
• PN Sequence Generator, if the Use trigger signal as clock option is selected.

See Also
Subsystem | Trigger

Introduced in R2014a

3 Supported Blocks

3-458

Triggered To Workspace
Write input sample to MATLAB workspace when triggered (HDL Coder)

Description
The Triggered To Workspace block is available with DSP System Toolbox. For information
about the simulation behavior and block parameters, see Triggered To Workspace.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only

the input/output port definitions for the subsystem. Therefore, you can
use a subsystem in your model to generate an interface to existing,
manually written HDL code.

The black-box interface generation for subsystems is similar to the Model
block interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

 Triggered To Workspace

3-459

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-460

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
This block cannot be the DUT, so the block property settings in the Target Specification
tab are ignored.

See Also
Subsystem | Trigger

Introduced in R2014a

 Triggered To Workspace

3-461

Trigonometric Function
Specified trigonometric function on input (HDL Coder)

Description
The Trigonometric Function block is available with Simulink.

For information about the simulation behavior and block parameters, see Trigonometric
Function.

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

The Trigonometric Function block supports HDL code generation for the functions in this
table.

Architecture Functi
on

Approximati
on Method

UsePipelinedKe
rnel Setting

Additional cycles of
latency

SinCosCordic sin CORDIC On Number of iterations + 1
Off 0

cos CORDIC On Number of iterations + 1
Off 0

cos +
jsin

CORDIC On Number of iterations + 1
Off 0

sinco
s

CORDIC On Number of iterations + 1
Off 0

For an HDL implementation of the atan2 function, use the Complex to Magnitude-Angle
HDL Optimized block, from the Math Operations library in DSP System Toolbox.

3 Supported Blocks

3-462

HDL Block Properties

General
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

UsePipelinedKernel
Whether to use a pipelined implementation of the CORDIC algorithm in the generated
code. The default is On.

Setting Description
On (default) Use a pipelined implementation of the CORDIC algorithm. The

pipelined implementation adds latency.
Off Use a combinatorial implementation of the CORDIC algorithm.

The combinatorial implementation does not add latency. If the
block is in a feedback loop, use this implementation.

Native Floating Point
HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less
than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

 Trigonometric Function

3-463

LatencyStrategy
Specify whether to map the blocks in your design to inherit, Max, Min, Zero, or
Custom for the floating-point operator. The default is inherit. See also
“LatencyStrategy”.

Restrictions
• For the sin and cos functions, only signed fixed-point data types are supported for

CORDIC approximations.
• HDL Coder displays an error when you select the SinCosCordic architecture,

UsePipelinedKernel is On, and the block is in a feedback loop.

See Also
cordiccos | cordicsin | cordicsincos

Introduced in R2014a

3 Supported Blocks

3-464

Truth Table
Represent logical decision-making behavior with conditions, decisions, and actions (HDL
Coder)

Description
The Truth Table block is available with Stateflow.

For information about the simulation behavior and block parameters, see Truth Table.

Tunable Parameters
You can use a tunable parameter in a Truth Table intended for HDL code generation. For
details, see “Generate DUT Ports for Tunable Parameters”.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

 Truth Table

3-465

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or variables.
Specify the list of variables as a character vector, with spaces separating the
variables.

3 Supported Blocks

3-466

See Also
Chart | Sequence Viewer | State Transition Table

Introduced in R2014a

 Truth Table

3-467

Unary Minus
Negate input (HDL Coder)

Description
The Unary Minus block is available with Simulink.

For information about the simulation behavior and block parameters, see Unary Minus.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

3 Supported Blocks

3-468

Introduced in R2014a

 Unary Minus

3-469

Unit Delay
Delay signal one sample period (HDL Coder)

Description
The Unit Delay block is available with Simulink.

For information about the simulation behavior and block parameters, see Unit Delay.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Complex Data Support
This block supports code generation for complex signals.

3 Supported Blocks

3-470

Introduced in R2014a

 Unit Delay

3-471

Unit Delay Enabled (Obsolete)
Delay signal one sample period, if external enable signal is on (HDL Coder)

Note The Unit Delay Enabled block is not recommended. This block was removed from
the Discrete library in R2016b. In new models, use the Unit Delay Enabled Synchronous
block instead. Existing models that contain the Unit Delay Enabled block continue to work
for backward compatibility.

Description
The Unit Delay Enabled block delays a signal by one sample period when the external
enable signal is on. While the enable is off, the block is disabled. It holds the current state
at the same value and outputs that value.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-472

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2007b

 Unit Delay Enabled (Obsolete)

3-473

Unit Delay Enabled Resettable (Obsolete)
Delay signal one sample period, if external enable signal is on, with external Boolean
reset (HDL Coder)

Note The Unit Delay Enabled Resettable block is not recommended. This block was
removed from the Discrete library in R2016b. In new models, use the Unit Delay Enabled
Resettable Synchronous block instead. Existing models that contain the Unit Delay
Enabled Resettable block continue to work for backward compatibility.

Description
The Unit Delay Enabled Resettable block can delay the signal one sample period, if
external enable signal is on, with external reset as off. If the enable signal is off, the block
is disabled.

When the enable and reset signals are on, the block output resets the current state.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-474

SoftReset
Specify on to generate reset logic for the block that is more efficient for synthesis, but
does not match the Simulink behavior. The default is off. See “SoftReset”.

Introduced in R2010a

 Unit Delay Enabled Resettable (Obsolete)

3-475

Unit Delay Resettable (Obsolete)
Delay signal one sample period, with external Boolean reset (HDL Coder)

Note The Unit Delay Resettable block is not recommended. This block was removed from
the Discrete library in R2016b. In new models, use the Unit Delay Resettable
Synchronous block instead. Existing models that contain the Unit Delay Enabled
Resettable block continue to work for backward compatibility.

Description
The Unit Delay Resettable block delays the signal one sample period, with external reset.
The block can reset both its state and output based on an external reset signal. The block
has two input ports. One input port is for the input signal and the other input port is for
the external reset signal.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-476

SoftReset
Specify on to generate reset logic for the block that is more efficient for synthesis, but
does not match the Simulink behavior. The default is off. See “SoftReset”.

Introduced in R2010a

 Unit Delay Resettable (Obsolete)

3-477

Unit Delay Enabled Synchronous
Delay input signal by one sample period when external Enable signal is true (HDL Coder)

Description
The Unit Delay Enabled Synchronous block is available in the Discrete section of the HDL
Coder block library. The block implementation consists of a Synchronous Subsystem that
contains an Enabled Delay block with a Delay length of one and a State Control block in
Synchronous mode. The synchronous behavior of the State Control block generates
cleaner HDL code and uses fewer hardware resources. For more information, see State
Control.

For information about the simulation behavior and block parameters, see Unit Delay
Enabled Synchronous.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

3 Supported Blocks

3-478

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2017b

 Unit Delay Enabled Synchronous

3-479

Unit Delay Resettable Synchronous
Delay input signal by one sample period when external Reset signal is false (HDL Coder)

Description
The Unit Delay Resettable Synchronous block is available in the Discrete section of the
HDL Coder block library. The block implementation consists of a Synchronous Subsystem
that contains a Resettable Delay block with a Delay length of one and a State Control
block in Synchronous mode. The synchronous behavior of the State Control block
generates cleaner HDL code and uses fewer hardware resources. For more information,
see State Control.

For information about the simulation behavior and block parameters, see Unit Delay
Resettable Synchronous.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

3 Supported Blocks

3-480

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2017b

 Unit Delay Resettable Synchronous

3-481

Unit Delay Enabled Resettable Synchronous
Delay input signal by one sample period when external Enable signal is true and external
Reset signal is false (HDL Coder)

Description
The Unit Delay Enabled Resettable Synchronous block is available in the Discrete section
of the HDL Coder block library. The block implementation consists of a Synchronous
Subsystem that contains an Enabled Resettable Delay block with a Delay length of one
and a State Control block in Synchronous mode. The synchronous behavior of the State
Control block generates cleaner HDL code and uses fewer hardware resources. For more
information, see State Control.

For information about the simulation behavior and block parameters, see Unit Delay
Enabled Resettable Synchronous.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
InputPipeline

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

3 Supported Blocks

3-482

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2017b

 Unit Delay Enabled Resettable Synchronous

3-483

Upsample
Resample input at higher rate by inserting zeros (HDL Coder)

Description
The Upsample block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Upsample.

Best Practices
Consider whether your model can use the Repeat block instead of the Upsample block.
The Repeat block uses fewer hardware resources, so it is a best practice to use Upsample
only when your algorithm requires zero-padding upsampling.

See also “Multirate Model Requirements for HDL Code Generation”.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

3 Supported Blocks

3-484

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
Input processing set to Columns as channels (frame based) is not supported.

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Upsample

3-485

Variable Selector
Select subset of rows or columns from input (HDL Coder)

Description
The Variable Selector block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Variable
Selector.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-486

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Variable Selector

3-487

Variant Subsystem
Represent a subsystem with multiple subsystems (HDL Coder)

Description
The Variant Subsystem block is available with Simulink. For information about the
simulation behavior and block parameters, see Variant Subsystem.

HDL Architecture
Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.

HDL Coder generates code for only the active variant.
BlackBox Generate a black-box interface. That is, the generated HDL code includes

only the input/output port definitions for the subsystem. In this way, you
can use a subsystem in your model to generate an interface to existing
manually written HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation but treat it as a “no-op” in the HDL code.

Black Box Interface Customization
For the BlackBox architecture, you can customize port names and set attributes of the
external component interface. See “Customize Black Box or HDL Cosimulation Interface”.

3 Supported Blocks

3-488

HDL Block Properties

General
AdaptivePipelining

Automatic pipeline insertion based on the synthesis tool, target frequency, and
multiplier word-lengths. The default is inherit. See also “AdaptivePipelining”.

BalanceDelays
Detects introduction of new delays along one path and inserts matching delays on the
other paths. The default is inherit. See also “BalanceDelays”.

ClockRatePipelining
Insert pipeline registers at a faster clock rate instead of the slower data rate. The
default is inherit. See also “ClockRatePipelining”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also “DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Variant Subsystem

3-489

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, that are time multiplexed to transform into
serial, scalar data paths. The default is 0, which implements fully parallel data paths.
See also “Streaming”.

Target Specification
This block cannot be the DUT, so the block property settings in the Target Specification
tab are ignored.

Restrictions
• The DUT cannot be a Variant Subsystem.

Introduced in R2014a

3 Supported Blocks

3-490

Vector Concatenate
Concatenate input signals of same data type to create contiguous output signal (HDL
Coder)

Description
The Vector Concatenate block is available with Simulink.

For information about the simulation behavior and block parameters, see Vector
Concatenate.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Vector Concatenate

3-491

Complex Data Support
This block supports code generation for complex signals.

Restrictions
HDL code generation does not support matrices at the input or output ports of the block .

Introduced in R2014a

3 Supported Blocks

3-492

Viterbi Decoder
Decode convolutionally encoded data using Viterbi algorithm (HDL Coder)

Description
The Viterbi Decoder block is available with Communications Toolbox.

Note For decoding data encoded with truncated or terminated modes, or punctured
codes, use the Viterbi Decoder block from LTE HDL Toolbox.

For information about the simulation behavior and block parameters, see Viterbi Decoder.

HDL Coder supports the following features of the Viterbi Decoder block:

• Non-recursive encoder/decoder with feed-forward trellis and simple shift register
generation configuration

• Continuous mode
• Sample-based input
• Decoder rates from 1/2 to 1/7
• Constraint length from 3 to 9

HDL Architecture
The Viterbi Decoder block decodes every bit by tracing back through a traceback depth
that you define for the block. The block implements a complete traceback for each
decision bit, using registers to store the minimum state index and branch decision in the
traceback decoding unit. There are two methods to optimize the traceback logic: a
pipelined register-based implementation or a RAM-based architecture. See the “HDL
Code Generation for Viterbi Decoder” (Communications Toolbox) example.

 Viterbi Decoder

3-493

Register-Based Traceback
You can specify that the traceback decoding unit be pipelined to improve the speed of the
generated circuit. You can add pipeline registers to the traceback unit by specifying the
number of traceback stages per pipeline register.

Using the TracebackStagesPerPipeline implementation parameter, you can balance
the circuit performance based on system requirements. A smaller parameter value
indicates the requirement to add more registers to increase the speed of the traceback
circuit. Increasing the parameter value results in fewer registers along with a decrease in
the circuit speed.

RAM-Based Traceback
Instead of using registers, you can choose to use RAMs to save the survivor branch
information. The coder does not support Enable reset input port when using RAM-
based traceback.

1 Set the Architecture property of the Viterbi Decoder block to RAM-based
Traceback.

2 Set the traceback depth on the Viterbi Decoder block mask.

3 Supported Blocks

3-494

RAM-based traceback and register-based traceback differ in the following ways:

• The RAM-based implementation traces back through one set of data to find the initial
state to decode the previous set of data. The register-based implementation combines
the traceback and decode operations into one step. It uses the best state found from
the minimum operation as the decoding initial state.

• RAM-based implementation traces back through M samples, decodes the previous M
bits in reverse order, and releases one bit in order at each clock cycle. The register-
based implementation decodes one bit after a complete traceback.

Because of the differences in the two traceback algorithms, the RAM-based
implementation produces different numerical results than the register-based traceback. A

 Viterbi Decoder

3-495

longer traceback depth, for example, 10 times the constraint length, is recommended in
the RAM-based traceback. This depth achieves a similar bit error rate (BER) as the
register-based implementation. The size of RAM required for the implementation depends
on the trellis and the traceback depth.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

TracebackStagesPerPipeline
See “Register-Based Traceback” on page 3-494.

Restrictions
• Punctured code: Do not select this option. Punctured code requires frame-based

input, which HDL Coder does not support.
• Decision type: The coder does not support the Unquantized decision type.
• Error if quantized input values are out of range: The coder does not support this

option.
• Operation mode: The coder supports only the Continuous mode.
• Enable reset input port: When you enable both Enable reset input port and Delay

reset action to next time step, HDL support is provided. You must select
Continuous operation mode, and use register-based traceback.

3 Supported Blocks

3-496

• You cannot use the Viterbi Decoder block inside a Resettable Synchronous Subsystem.

Input and Output Data Types
• When Decision type is set to Soft decision, the HDL implementation of the Viterbi

Decoder block supports fixed-point inputs and output. For input, the fixed-point data
type must be ufixN. N is the number of soft-decision bits. Signed built-in data types
(int8, int16, int32) are not supported. For output, the HDL implementation of the
Viterbi Decoder block supports block-supported output data types.

• When Decision type is set to Hard decision, the block supports input with data
types ufix1 and Boolean. For output, the HDL implementation of the Viterbi
Decoder block supports block-supported output data types.

• The HDL implementation of the Viterbi Decoder block does not support double and
single input data types. The block does not support floating point output for fixed-point
inputs.

See Also

Topics
“HDL Code Generation for Viterbi Decoder” (Communications Toolbox)

Introduced in R2014a

 Viterbi Decoder

3-497

Viterbi Decoder
Decode convolutionally encoded data using Viterbi algorithm (HDL Coder)

Description
The Viterbi Decoder block is available with LTE HDL Toolbox. This block supports
continuous, truncated, and terminated modes and accepts an optional erasure signal.

For information about the simulation behavior and block parameters, see Viterbi Decoder.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-498

Restrictions
You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Introduced in R2018b

 Viterbi Decoder

3-499

Waterfall
View vectors of data over time (HDL Coder)

Description
The Waterfall block is available with DSP System Toolbox.

For information about the simulation behavior and block parameters, see Waterfall.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

3 Supported Blocks

3-500

Wrap To Zero
Set output to zero if input is above threshold (HDL Coder)

Description
The Wrap To Zero block is available with Simulink.

For information about the simulation behavior and block parameters, see Wrap To Zero.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Wrap To Zero

3-501

Restrictions
The input signal and Threshold parameter must have equal size. For example, if the
input is a two-dimensional vector, Threshold must also be a two-dimensional vector.

Introduced in R2014b

3 Supported Blocks

3-502

XY Graph
Display X-Y plot of signals using MATLAB figure window (HDL Coder)

Description
The XY Graph block is available with Simulink.

For information about the simulation behavior and block parameters, see XY Graph.

HDL Architecture
When you use this block in your model, HDL Coder does not generate HDL code for it.

Introduced in R2014a

 XY Graph

3-503

Zero-Order Hold
Implement zero-order hold of one sample period (HDL Coder)

Description
The Zero-Order Hold block is available with Simulink.

For information about the simulation behavior and block parameters, see Zero-Order
Hold.

HDL Architecture
This block has a single, default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

3 Supported Blocks

3-504

Complex Data Support
This block supports code generation for complex signals.

Introduced in R2014a

 Zero-Order Hold

3-505

Signed Sqrt
Calculate signed square root (HDL Coder)
Library: HDL Coder / HDL Floating Point Operations

Description
The Sqrt block calculates the square root, signed square root, or reciprocal of the square
root on the input signal. From the Function parameter list, select one of the functions
listed in this table.

Function Description Mathematical
Expression

MATLAB Equivalent

sqrt Square root of the
input

u0.5 sqrt

signedSqrt Square root of the
absolute value of the
input, multiplied by
the sign of the input

sign(u)*|u|0.5 —

rSqrt Reciprocal of the
square root of the
input

u-0.5 —

The block icon changes to match the function.

HDL Code Generation Support
For the Sqrt block with Function set to signedSqrt, the code generator supports
SqrtFunction architecture and various data types. The SqrtFunction architecture
supports code generation in native floating-point mode. For this architecture, you can
specify the HandleDenormals and LatencyStrategy settings from the Native Floating
Point tab in the HDL Block Properties dialog box.

3 Supported Blocks

3-506

Architecture Fixed-Point Native
Floating-Point

HandleDenormal
s

LatencyStrat
egy

SqrtFunction N/A ✓ ✓ ✓

HDL Architecture
This block has multicycle implementations that introduce additional latency in the
generated code. To see the added latency, view the generated model or validation model.
See “Generated Model and Validation Model”.

Architecture Parameter Additional cycles
of latency

Description

SqrtFunction
(default)

None 34 (For output data
type other than
single)

Use a bitset shift/addition algorithm.

28 (For output data
type single)

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

HandleDenormals
Specify whether you want HDL Coder to insert additional logic to handle denormal
numbers in your design. Denormal numbers are numbers that have magnitudes less

 Signed Sqrt

3-507

than the smallest floating-point number that can be represented without leading zeros
in the mantissa. The default is inherit. See also “Denormal Numbers”.

LatencyStrategy
Specify whether to map the blocks in your design to minimum or maximum latency for
the floating-point operator. The default is inherit. See also “Latency Considerations
with Native Floating Point”.

Restrictions
• Input must be a floating point.

Ports

Input
Port_1 — Input signal
scalar | vector

Input signal to the block to calculate the square root, signed square root, or reciprocal of
square root. The sqrt function accepts real or complex inputs, except for complex fixed-
point signals. signedSqrt and rSqrt do not accept complex inputs.
Data Types: single

Output
Port_1 — Output signal
scalar | vector

Output signal that is the signed square root of the input signal.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

3 Supported Blocks

3-508

Parameters

Main
Function — Function the block performs
sqrt (default) | signedSqrt | rSqrt

Specify the mathematical function that the block calculates. The block icon changes to
match the function you select.

Function Block Icon
sqrt

signedSqrt

rSqrt

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'sqrt' | 'signedSqrt' | 'rSqrt'
Default: 'sqrt'

Output signal type — Output signal type
auto (default) | real | complex

Specify the output signal type of the block.

 Signed Sqrt

3-509

Function Input Signal
Type

Output Signal Type
Auto Real Complex

sqrt real real for
nonnegative inputs

NaN for negative
inputs

real for
nonnegative inputs

NaN for negative
inputs

complex

complex complex error complex
signedSqrt real real real error

complex error error error
rSqrt real real real error

complex error error error

Programmatic Use
Block Parameter: OutputSignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Algorithm
The Algorithm tab contains the Method and the Number of iterations fields. These
fields are available only if you select the rsqrt option in the Function field of the Main
tab. For more information, see Reciprocal Sqrt.

Data Types

Click the Show data type assistant button to display the Data Type Assistant,
which helps you set the data type attributes. For more information, see “Specify Data
Types Using Data Type Assistant” (Simulink).

Intermediate results data type — Data type of intermediate results
Inherit:Inherit via internal rule (default)

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr

3 Supported Blocks

3-510

Type: character vector
Values: 'Inherit: Inherit via internal rule'
Default: 'Inherit: Inherit via internal rule'

Output — Output data type
Inherit: Same as first input (default) | Inherit: Inherit via internal
rule | Inherit: Inherit via back propagation | double | single | int8 |
int32 | uint32 | fixdt(1,16,2^0,0) | <data type expression> | ...

Specify the output data type. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via
back propagation' | 'Inherit: Same as first input' | 'double' | 'single',
'int8', 'uint8', int16, 'uint16', 'int32', 'uint32', fixdt(1,16,0),
fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Inherit: Same as first input'

Lock output data type setting against changes by the fixed-point
tools — Prevent fixed-point tools from overriding data types
off (default) | on

Select this option to lock the output data type setting of this block against changes by the
Fixed-Point Tool and the Fixed-Point Advisor. For more information, see “Use Lock Output
Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Saturate on integer overflow — Choose the behavior when integer overflow
occurs
on (default) | boolean

 Signed Sqrt

3-511

Action Rationale What Happens for
Overflows

Example

Select this
check box.

Your model has possible
overflow and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box selected, the
block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Clear this check
box.

You want to optimize
efficiency of your
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see “Check
for Signal Range Errors”
(Simulink).

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. Any
block operation result
greater than this maximum
value causes overflow of
the 8-bit integer. With the
check box cleared, the
software interprets the
overflow-causing value as
int8, which can produce
an unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is
-126.

When you select this check box, saturation applies to every internal operation on the
block, not just the output or result. Usually, the code generation process can detect when
overflow is not possible. In this case, the code generator does not produce saturation
code.

3 Supported Blocks

3-512

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types single | base integer | fixed point
Multidimensional
Signals

Yes

Variable-Size
Signals

Yes

See Also
Math Function | Reciprocal Sqrt | Sqrt

Introduced in R2018b

 Signed Sqrt

3-513

Properties — Alphabetical List

4

ClockHighTime
Specify period, in nanoseconds, during which test bench drives clock input signals high
(1)

Settings
ns

Default: 5

The clock high time is expressed as a positive integer.

The ClockHighTime and ClockLowTime properties define the period and duty cycle for
the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Usage Notes
HDL Coder ignores this property if ForceClock is set to off.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ClockLowTime, ForceClock, ForceClockEnable, ForceReset, HoldTime

4 Properties — Alphabetical List

4-2

ClockLowTime
Specify period, in nanoseconds, during which test bench drives clock input signals low (0)

Settings
Default: 5

The clock low time is expressed as a positive integer.

The ClockHighTime and ClockLowTime properties define the period and duty cycle for
the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Usage Notes
HDL Coder ignores this property if ForceClock is set to off.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ClockHighTime, ForceClock, ForceClockEnable, ForceReset, HoldTime

 ClockLowTime

4-3

DetectBlackBoxNameCollision
Check for duplicate module or entity names in generated code and black box interface
code

Settings
'None'

Do not check for black box subsystems that have the same HDL module name as a
generated HDL module name.

'Warning' (default)

Check for black box subsystems that have the same HDL module name as a generated
HDL module name. Display a warning if matching names are found.

'Error'

Check for black box subsystems that have the same HDL module name as a generated
HDL module name. Display an error if matching names are found.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Topics
“Check for name conflicts in black box interfaces”

4 Properties — Alphabetical List

4-4

EDAScriptGeneration
Enable or disable generation of script files for third-party tools

Settings
'on' (default)

Enable generation of script files.

'off'

Disable generation of script files.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

 EDAScriptGeneration

4-5

ForceClock
Specify whether test bench forces clock input signals

Settings
'on' (default)

Selected (default)

Specify that the test bench forces the clock input signals. When this option is set, the
clock high and low time settings control the clock waveform.

'off'

Cleared

Specify that a user-defined external source forces the clock input signals.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ClockLowTime, ClockHighTime, ForceClockEnable, ForceReset, HoldTime

4 Properties — Alphabetical List

4-6

ForceClockEnable
Specify whether test bench forces clock enable input signals

Settings
'on' (default)

Selected (default)

Specify that the test bench forces the clock enable input signals to active high (1) or
active low (0), depending on the setting of the clock enable input value.

'off'

Cleared

Specify that a user-defined external source forces the clock enable input signals.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ClockHighTime, ClockLowTime, ForceClock, HoldTime

 ForceClockEnable

4-7

ForceReset
Specify whether test bench forces reset input signals

Settings
'on' (default)

Selected (default)

Specify that the test bench forces the reset input signals. If you enable this option, you
can also specify a hold time to control the timing of a reset.

'off'

Cleared

Specify that a user-defined external source forces the reset input signals.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ClockHighTime, ClockLowTime, ForceClock, HoldTime

4 Properties — Alphabetical List

4-8

FPToleranceStrategy
Specify whether to check for floating-point tolerance based on relative error or ULP error

Settings
Use this setting to specify the tolerance strategy for checking the numerical accuracy in
the generated test bench. Based on the tolerance strategy that you specify, you can enter
a custom tolerance value.

'relative' (default)

When you verify the generated code, HDL Coder checks for the floating-point tolerance
based on the relative error.

'ulp'

When you verify the generated code, HDL Coder checks for the floating-point tolerance
based on the ULP error.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Example
To specify the floating-point tolerance value for a model, use the hdlset_param function
to specify the tolerance strategy, and then enter the tolerance value. For example, to
check the floating-point tolerance based on ULP error and enter the tolerance value:

% check for floating-point tolerance based on the ULP error
hdlset_param('sfir_single', 'FPToleranceStrategy', 'ULP');

% When using ULP error, optionally enter tolerance value greater than or equal to 0
hdlset_param('FP_test_16a', 'FPToleranceValue', 1);

 FPToleranceStrategy

4-9

See Also
• FPToleranceValue
• “Floating point tolerance check based on”
• “Tolerance Value”
• “Getting Started with HDL Coder Native Floating-Point Support”

4 Properties — Alphabetical List

4-10

FPToleranceValue
Enter the tolerance value based on floating-point tolerance check setting

Settings
N

Default: 1e-07

The value of N depends on the floating-point tolerance check setting that you specify. Use
this setting to specify a custom tolerance value for checking the numerical accuracy in
the generated test bench. When you set the Floating point tolerance check based on
to:

• relative error, the default is a tolerance value of 1e-07. When you use this
floating-point tolerance check setting, specify the tolerance value as a double data
type.

• ulp error, the default is a Tolerance Value of 0. When you use this floating-point
tolerance check setting, specify the tolerance value as an integer. You can specify a
Tolerance Value, N, that is greater than or equal to 0.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Example
To specify the floating-point tolerance value for a model, use the hdlset_param function
to specify the tolerance strategy, and then enter the tolerance value. For example, to
check the floating-point tolerance based on ULP error and enter the tolerance value:

% check for floating-point tolerance based on the ULP error
hdlset_param('sfir_single', 'FPToleranceStrategy', 'ULP');

 FPToleranceValue

4-11

% When using ULP error, optionally enter tolerance value greater than or equal to 0
hdlset_param('FP_test_16a', 'FPToleranceValue', 1);

See Also
• “Tolerance Value”
• FPToleranceStrategy
• “Floating point tolerance check based on”

4 Properties — Alphabetical List

4-12

GenerateCoSimBlock
Generate HDL Cosimulation blocks for use in testing DUT

Settings
'on'

If your installation includes one or more of the following HDL simulation features, HDL
Coder generates an HDL Cosimulation block for each:

• HDL Verifier for use with Mentor Graphics ModelSim
• HDL Verifier for use with Cadence Incisive

The coder configures the generated HDL Cosimulation blocks to conform to the port and
data type interface of the DUT selected for code generation. By connecting an HDL
Cosimulation block to your model in place of the DUT, you can cosimulate your design
with the desired simulator.

The coder appends the character vector that the CosimLibPostfix property specifies to
the names of the generated HDL Cosimulation blocks.

'off' (default)

Do not generate HDL Cosimulation blocks.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 GenerateCoSimBlock

4-13

GenerateCoSimModel
Generate model containing HDL Cosimulation block for use in testing DUT

Settings
'ModelSim' (default)

If your installation includes HDL Verifier, the coder generates and opens a Simulink model
that contains an HDL Cosimulation block for Mentor Graphics ModelSim.

'Incisive'

If your installation includes HDL Verifier, the coder generates and opens a Simulink model
that contains an HDL Cosimulation block for Cadence Incisive.

'None'

Do not create a cosimulation model.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate a Cosimulation Model”

4 Properties — Alphabetical List

4-14

GenerateSVDPITestbench
Generate SystemVerilog DPI test bench

Settings
'ModelSim' (default)

Generate SystemVerilog DPI test bench, and build-and-run scripts, for the Mentor
Graphics ModelSim simulator.

'Incisive'

Generate SystemVerilog DPI test bench, and build-and-run scripts, for the Cadence
Incisive simulator.

'VCS' (default)

Generate SystemVerilog DPI test bench, and build-and-run scripts, for the Synopsys®

VCS® simulator.

'Vivado'

Generate SystemVerilog DPI test bench, and build-and-run scripts, for the Xilinx Vivado
simulator.

When you set this property, the coder generates a direct programming interface (DPI)
component for your entire Simulink model, including your DUT and data sources. Your
entire model must support C code generation with Simulink Coder. The coder generates a
SystemVerilog test bench that compares the output of the DPI component with the output
of the HDL implementation of your DUT. The coder also builds shared libraries and
generates a simulation script for the simulator you select.

Consider using this option if the default HDL test bench takes a long time to generate or
simulate. Generation of a DPI test bench is sometimes faster than the default version
because it does not run a full Simulink simulation to create the test bench data.
Simulation of a DPI test bench with a large data set is faster than the default version
because it does not store the input or expected data in a separate file.

 GenerateSVDPITestbench

4-15

To use this feature, you must have HDL Verifier and Simulink Coder licenses. To run the
SystemVerilog testbench with generated VHDL code, you must have a mixed-language
simulation license for your HDL simulator.

Limitations This test bench is not supported when you generate HDL code for the top-
level Simulink model. Your DUT subsystem must meet the following conditions:

• Input and output data types of the DUT cannot be larger than 64 bits.
• Input and output ports of the DUT cannot use enumerated data types.
• Input and output ports cannot be single-precision or double-precision data types.
• The DUT cannot have multiple clocks. You must set the Clock inputs code generation

option to Single.
• Use trigger signal as clock must not be selected.
• If the DUT uses vector ports, you must use Scalarize vector ports to flatten the

interface.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate a SystemVerilog DPI Test Bench” on page 2-111.

“Verify HDL Design With Large Data Set Using SystemVerilog DPI Test Bench”

4 Properties — Alphabetical List

4-16

HDLCodeCoverage
Include HDL code coverage switches in generated test bench scripts

Settings
'on'

Generated script includes code coverage switches. When you run the HDL simulation,
code coverage is collected for your generated test bench. Specify your HDL simulator in
the SimulationTool property. The coder generates build-and-run scripts for the
simulator you specify.

'off' (default)

Generated script does not include code coverage switches, and does not collect code
coverage.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
SimulationTool

 HDLCodeCoverage

4-17

HDLCompileInit
Specify text written to initialization section of compilation script

Settings
'Initialization text'

Default: 'vlib %s\n'.

Specify text written to initialization section of compilation script as a character vector. If
your TargetLanguage is VHDL, the implicit argument, %s, is the contents of the
VHDLLibraryName property. If your TargetLanguage is Verilog, the implicit
argument is work.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Topics
“Generate Scripts for Compilation, Simulation, and Synthesis”

4 Properties — Alphabetical List

4-18

HDLCompileTerm
Specify text written to termination section of compilation script

Settings
'Termination text'

Specify text written to termination section of compilation script as a character vector. The
default is ''.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLCompileTerm

4-19

HDLCompileFilePostfix
Specify postfix appended to file name for generated Mentor Graphics ModelSim
compilation scripts

Settings
'Compilation file postfix'

Default:'_compile.do'.

Specify the postfix as a character vector. HDL Coder appends the postfix to the file name
for generated Mentor Graphics ModelSim compilation scripts.

For example, if the name of the device under test or test bench is my_design, HDL Coder
adds the postfix _compile.do to form the name my_design_compile.do.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-20

HDLCompileVerilogCmd
Specify command written to compilation script for Verilog files

Settings
'Compilation command'

Default: 'vlog %s %s\n'.

Specify command written to compilation script for Verilog files as a character vector. The
two arguments are the contents of the SimulatorFlags property and the file name of
the current module. To omit the flags, set SimulatorFlags to '' (the default).

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLCompileVerilogCmd

4-21

HDLCompileVHDLCmd
Specify command written to compilation script for VHDL files

Settings
'Compilation command'

Default: 'vcom %s %s\n'.

Specify command written to compilation script for VHDL files as a character vector. The
two arguments are the contents of the SimulatorFlags property and the file name of
the current entity. To omit the flags, set SimulatorFlags to '' (the default).

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

4 Properties — Alphabetical List

4-22

HDLSimCmd
Specify command written to simulation script

Settings
'Simulation command'

Default: 'vsim -novopt %s.%s\n'.

Specify the command written to simulation script as a character vector. If your
TargetLanguage is 'VHDL', the first implicit argument is the value of
VHDLLibraryName. If your TargetLanguage is 'Verilog', the first implicit argument
is 'work'.

The second implicit argument is the top-level module or entity name.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLSimCmd

4-23

HDLSimInit
Specify text written to initialization section of simulation script

Settings
'Simulation initialization'

Specify text written to initialization section of simulation script as a character vector. The
default is

['onbreak resume\n',...
'onerror resume\n']

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

4 Properties — Alphabetical List

4-24

HDLSimFilePostfix
Specify postfix appended to file name for generated Mentor Graphics ModelSim
simulation scripts

Settings
'Simulation file postfix'

Default: _sim.do.

Specify the postfix as a character vector. HDL Coder appends the postfix to the file name
for generated Mentor Graphics ModelSim simulation scripts.

For example, if the name of your test bench file is my_design, HDL Coder adds the
postfix _sim.do to form the name my_design_tb_sim.do.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 HDLSimFilePostfix

4-25

HDLSimTerm
Specify text written to termination section of simulation script

Settings
'Termination text'

Specify text written to termination section of simulation script as a character vector.
Default is 'run -all\n'.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

4 Properties — Alphabetical List

4-26

HDLSimViewWaveCmd
Specify waveform viewing command written to simulation script

Settings
'Waveform view command'

Default: 'add wave sim:%s\n'

Specify waveform viewing command as a character vector. The implicit argument adds
the signal paths for the DUT top-level input, output, and output reference signals.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLSimViewWaveCmd

4-27

HDLLintCmd
Specify command written to HDL lint script

Settings
'Script command'

Default: ''

Specify the command written to the HDL lint Tcl script as a character vector. The
command must contain %s, which is a placeholder for the HDL file name.

Dependencies
If HDLLintCmd is set to the default value, '', and you set HDLLintCmd to one of the
supported third-party tools, HDL Coder automatically inserts a tool-specific default
command string in the Tcl script.

Usage
If you set HDLLintTool to Custom, you must use %s as a placeholder for the HDL file
name in the generated Tcl script. Specify HDLLintCmd using the following format:

custom_lint_tool_command -option1 -option2 %s

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-28

See Also
HDLLintTool, HDLLintInit, HDLLintTerm, “Generate an HDL Lint Tool Script”

 HDLLintCmd

4-29

HDLLintInit
Specify HDL lint script initialization name

Settings
'Initialization name'

Default: ''

Specify the HDL lint script initialization name as a character vector.

Dependencies
If HDLLintInit is set to the default value, '', and you set HDLLintCmd to one of the
supported third-party tools, HDL Coder automatically inserts a tool-specific default
initialization string in the Tcl script.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLLintTool, HDLLintCmd, HDLLintTerm, “Generate an HDL Lint Tool Script”

4 Properties — Alphabetical List

4-30

HDLLintTerm
Specify HDL lint script termination name

Settings
'Script termination name'

Default: ''

Specify the HDL lint script termination name as a character vector.

Dependencies
If HDLLintTerm is set to the default value, '', and you set HDLLintCmd to one of the
supported third-party tools, HDL Coder automatically inserts a tool-specific default
termination string in the Tcl script.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLLintTool, HDLLintCmd, HDLLintInit, “Generate an HDL Lint Tool Script”

 HDLLintTerm

4-31

HDLLintTool
Select HDL lint tool for which HDL Coder generates scripts

Settings
'Lint Tool'

Default: 'None'.

HDLLintTool enables or disables generation of scripts for third-party HDL lint tools. By
default, HDL Coder does not generate a lint script.

To generate a script for one of the supported lint tools, set HDLLintTool to one of the
following:

HDLLintTool Option Lint Tool
'None' None. Lint script generation is disabled.
'AscentLint' Real Intent Ascent Lint
'Leda' Synopsys Leda
'SpyGlass' Atrenta SpyGlass
'Custom' A custom lint tool.

Dependencies
If you set HDLLintTool to one of the supported third-party tools, you can generate a Tcl
script without setting HDLLintInit, HDLLintCmd, and HDLLintTerm to nondefault
values. If the HDLLintInit, HDLLintCmd, and HDLLintTerm have default values, HDL
Coder automatically writes tool-specific default initialization, command, and termination
strings to the Tcl script.

4 Properties — Alphabetical List

4-32

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
Properties
HDLLintCmd | HDLLintInit | HDLLintTerm

Topics
“Generate an HDL Lint Tool Script”

 HDLLintTool

4-33

HDLSynthCmd
Specify command written to synthesis script

Settings
'Synthesis command'

Default: none.

Specify command written to synthesis script as a character vector. Your choice of
synthesis tool (see HDLSynthTool) sets the synthesis command string. The default is a
formatted text string passed to fprintf to write the command section of the synthesis
script. The implicit argument is the top-level module or entity name. The content of the
string is specific to the selected synthesis tool.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLSynthTool, HDLSynthInit, HDLSynthTerm, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

4 Properties — Alphabetical List

4-34

HDLSynthFilePostfix
Specify postfix appended to file name for generated synthesis scripts

Settings
'file name postfix'

Specify HDLSynthTool as a character vector.

Default: The value of HDLSynthFilePostfix normally defaults to a string that
corresponds to the synthesis tool that HDLSynthTool specifies.

For example, if the value of HDLSynthTool is 'Synplify', HDLSynthFilePostfix
defaults to '_synplify.tcl'. Then, if the name of the device under test is my_design,
HDL Coder adds the postfix _synplify.tcl to form the synthesis script file name
my_design_synplify.tcl.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLSynthTool, HDLSynthCmd, HDLSynthInit, HDLSynthTerm, “Generate Scripts for
Compilation, Simulation, and Synthesis”

 HDLSynthFilePostfix

4-35

HDLSynthInit
Specify text written to initialization section of synthesis script

Settings
'Initialization text'

Default: none

Specify the text written to the synthesis script initialization as a character vector. Your
choice of synthesis tool (see HDLSynthTool) sets the synthesis script initialization string.
The default is a formatted text passed to fprintf to write the initialization section of the
synthesis script. The default is a synthesis project creation command. The implicit
argument is the top-level module or entity name. The content of the string is specific to
the selected synthesis tool.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLSynthTool, HDLSynthCmd, HDLSynthTerm, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

4 Properties — Alphabetical List

4-36

HDLSynthTerm
Specify text written to termination section of synthesis script

Settings
'Termination text'

Default: none

Specify the synthesis script termination text as a character vector. Your choice of
synthesis tool (see HDLSynthTool) sets the synthesis termination string. The default is a
formatted text passed to fprintf to write the termination and clean up section of the
synthesis script. This section does not take arguments. The content of the string is
specific to the selected synthesis tool.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLSynthTool, HDLSynthCmd, HDLSynthInit, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

 HDLSynthTerm

4-37

HDLSynthTool
Select synthesis tool for which HDL Coder generates scripts

Settings
'Synthesis tool'

Default: 'None'.

Specify the synthesis tool as a character vector. HDLSynthTool enables or disables
generation of scripts for third-party synthesis tools. By default, HDL Coder does not
generate a synthesis script. To generate a script for one of the supported synthesis tools,
set HDLSynthTool to one of the following:

Tip The value of HDLSynthTool also sets the postfix (HDLSynthFilePostfix) that the
coder appends to generated synthesis script file names.

Choice of
HDLSynthToo
l Value...

Generates Script For... Sets HDLSynthFilePostfix
To...

'None' N/A; script generation disabled N/A
'ISE' Xilinx ISE '_ise.tcl'
'Libero' Microsemi Libero '_libero.tcl'
'Precision' Mentor Graphics Precision '_precision.tcl'
'Quartus' Altera Quartus II '_quartus.tcl'
'Synplify' Synopsys Synplify Pro® '_synplify.tcl'
'Vivado' Xilinx Vivado '_vivado.tcl'
'Custom' A custom synthesis tool '_custom.tcl'

4 Properties — Alphabetical List

4-38

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLSynthCmd, HDLSynthInit, HDLSynthTerm, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

 HDLSynthTool

4-39

HoldInputDataBetweenSamples
Specify how long subrate signal values are held in valid state

Settings
'on' (default)

Data values for subrate signals are held in a valid state across N base-rate clock cycles,
where N is the number of base-rate clock cycles that elapse per subrate sample period
and N >= 2.

'off'

Data values for subrate signals are held in a valid state for only one base-rate clock cycle.
For the subsequent base-rate cycles, data is in an unknown state (expressed as 'X') until
leading edge of the next subrate sample period.

Usage Notes
In most cases, the default ('on') is the best setting for this property. This setting matches
the behavior of a Simulink simulation, in which subrate signals are held valid through
each base-rate clock period.

In some cases (for example modeling memory or memory interfaces), it is desirable to set
HoldInputDataBetweenSamples to 'off'. In this way, you can obtain diagnostic
information about when data is in an invalid ('X') state.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-40

See Also
HoldTime, “Code Generation from Multirate Models”

 HoldInputDataBetweenSamples

4-41

HoldTime
Specify hold time for input signals and forced reset input signals

Settings
ns

Default: 2

Specify the number of nanoseconds during which the model's data input signals and
forced reset input signals are held past the clock rising edge.

The hold time is expressed as a positive integer.

This option applies to reset input signals only if forced resets are enabled.

Usage Notes
The hold time is the amount of time that reset input signals and input data are held past
the clock rising edge. The following figures show the application of a hold time (thold) for
reset and data input signals when the signals are forced to active high and active low.

4 Properties — Alphabetical List

4-42

Clock

Reset Input
Active High

thold

thold

Reset Input
Active Low

Hold Time for Reset Input Signals

Clock

Data Input

thold

Hold Time for Data Input Signals

Note A reset signal is always asserted for two cycles plus thold.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 HoldTime

4-43

See Also
ClockHighTime, ClockLowTime, ForceClock

4 Properties — Alphabetical List

4-44

IgnoreDataChecking
Specify number of samples during which output data checking is suppressed

Settings
N

Default: 0.

N must be a positive integer.

When N > 0, the test bench suppresses output data checking for the first N output
samples after the clock enable output (ce_out) is asserted.

Usage Notes
When using pipelined block implementations, output data may be in an invalid state for
some number of samples. To avoid spurious test bench errors, determine this number and
set IgnoreDataChecking accordingly.

Be careful to specify N as a number of samples, not as a number of clock cycles. For a
single-rate model, these are equivalent, but they are not equivalent for a multirate model.

You should use IgnoreDataChecking in cases where there is a state (register) initial
condition in the HDL code that does not match the Simulink state, including the following
specific cases:

• When you set theDistributedPipelining parameter to 'on' for the MATLAB
Function block (see “Distributed Pipeline Insertion for MATLAB Function Blocks”).

• When you set the ResetType parameter to 'None' (see “ResetType”) for the
following block types:

• commcnvintrlv2/Convolutional Deinterleaver
• commcnvintrlv2/Convolutional Interleaver
• commcnvintrlv2/General Multiplexed Deinterleaver

 IgnoreDataChecking

4-45

• commcnvintrlv2/General Multiplexed Interleaver
• dspsigops/Delay
• simulink/Additional Math & Discrete/Additional Discrete/Unit Delay Enabled
• simulink/Commonly Used Blocks/Unit Delay
• simulink/Discrete/Delay
• simulink/Discrete/Memory
• simulink/Discrete/Tapped Delay
• simulink/User-Defined Functions/MATLAB Function
• sflib/Chart
• sflib/Truth Table

• When generating a black box interface to existing manually-written HDL code.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-46

InitializeTestBenchInputs
Specify initial value driven on test bench inputs before data is asserted to DUT

Settings
'on'

Initial value driven on test bench inputs is'0'.

'off' (default)

Initial value driven on test bench inputs is 'X' (unknown).

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 InitializeTestBenchInputs

4-47

MultifileTestBench
Divide generated test bench into helper functions, data, and HDL test bench code files

Settings
'on'

Write separate files for test bench code, helper functions, and test bench data. The file
names are derived from the name of the DUT, the TestBenchPostfix property, and the
TestBenchDataPostfix property as follows:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target language is VHDL, the
default test bench file names are:

• symmetric_fir_tb.vhd: test bench code
• symmetric_fir_tb_pkg.vhd: helper functions package
• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog, the default test
bench file names are:

• symmetric_fir_tb.v: test bench code
• symmetric_fir_tb_pkg.v: helper functions package
• symmetric_fir_tb_data.v: test bench data

'off' (default)

Write a single test bench file containing the HDL test bench code and helper functions
and test bench data.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-48

See Also
TestBenchPostFix, TestBenchDataPostFix

 MultifileTestBench

4-49

ReservedWordPostfix
Specify postfix appended to identifiers for entities, signals, constants, or other model
elements that conflict with VHDL or Verilog reserved words

Settings
'postfix'

Default: '_rsvd'.

Specify the postfix as a character vector. The reserved word postfix is applied to
identifiers (for entities, signals, constants, or other model elements) that conflict with
VHDL or Verilog reserved words. For example, if your generating model contains a signal
named mod, HDL Coder adds the postfix _rsvd to form the name mod_rsvd.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-50

ResetLength
Define length of time (in clock cycles) during which reset is asserted

Settings
N

Default: 2.

N must be an integer greater than or equal to 0.

Resetlength defines N, the number of clock cycles during which reset is asserted. The
following figure illustrates the default case, in which the reset signal (active-high) is
asserted for 2 clock cycles.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 ResetLength

4-51

SimulationLibPath
Specify the path to the compiled Altera or Xilinx simulation libraries

Settings
'Simulation library path'

Default: ''

Specify the path to the compiled Altera or Xilinx simulation libraries. Altera provides the
simulation model files in \quartus\eda\sim_lib folder.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Usage Example
If you want to set the path to the compiled Xilinx Simulation library, enter:

myDUT = gcb;
libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/
 mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (myDUT, 'SimulationLibPath', libpath);

See Also

Topics
“Simulation library path”

4 Properties — Alphabetical List

4-52

SimulationTool
Simulator for which the tool generates build-and-run scripts for the test bench and
optional code coverage

Settings
'Mentor Graphics ModelSim' | 'Cadence Incisive'|'Custom'

Default: 'Mentor Graphics ModelSim'

When you select 'Custom', the tool uses the custom script properties.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 SimulationTool

4-53

SimulatorFlags
Specify simulator flags to apply to generated compilation scripts

Settings
'compilation simulator flags'

Default: ''

Specify simulator flags to apply to generated compilation scripts as a character vector.
The simulator flags are specific to your application and the simulator you are using. For
example, if you must use the 1076–1993 VHDL compiler, specify the flag -93.

Usage Notes
The flags you specify with this option are added to the compilation command in generated
compilation scripts. The simulation command is specified by the HDLCompileVHDLCmd or
HDLCompileVerilogCmd properties.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-54

SynthesisProjectAdditionalFiles
Include additional HDL or constraint files in synthesis project

Settings
'' (default)

Additional project files, such as HDL source files (.v, .vhd) or constraint files (.ucf), that
you want to include in your synthesis project, specified as a character vector. Separate
file names with a semicolon (;).

You cannot use SynthesisProjectAdditionalFiles to include Tcl files. To specify
synthesis project Tcl files, use the AdditionalProjectCreationTclFiles property of
the hdlcoder.WorkflowConfig object.

Usage
To include a source file, src_file.vhd, and a constraint file, constraint_file.ucf,
in the synthesis project for a DUT subsystem, myDUT:

hdlset_param (myDUT, 'SynthesisProjectAdditionalFiles', ...
 'L:\src_file.vhd;L:\constraint_file.ucf;')

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
hdlcoder.WorkflowConfig

 SynthesisProjectAdditionalFiles

4-55

TestBenchClockEnableDelay
Define elapsed time in clock cycles between deassertion of reset and assertion of clock
enable

Settings
N (integer number of clock cycles)

Default: 1

The TestBenchClockEnableDelay property specifies a delay time N, expressed in base-
rate clock cycles (the default value is 1) elapsed between the time the reset signal is
deasserted and the time the clock enable signal is first asserted.
TestBenchClockEnableDelay works in conjunction with the HoldTime property; after
deassertion of reset, the clock enable goes high after a delay of N base-rate clock cycles
plus the delay specified by HoldTime.

In the figure below, the reset signal (active-high) deasserts after the interval labelled
Hold Time. The clock enable asserts after a further interval labelled Clock enable
delay.

4 Properties — Alphabetical List

4-56

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HoldTime, ResetLength

 TestBenchClockEnableDelay

4-57

TestBenchDataPostFix
Specify suffix added to test bench data file name when generating multifile test bench

Settings
'Data posfix'

Default: '_data'.

Specify the postfix as a character vector. HDL Coder applies TestBenchDataPostFix
only when generating a multi-file test bench (i.e. when MultifileTestBench is 'on').

For example, if the name of your DUT is my_test, and TestBenchPostFix has the
default value _tb, the coder adds the postfix _data to form the test bench data file name
my_test_tb_data.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
MultifileTestBench, TestBenchPostFix

4 Properties — Alphabetical List

4-58

TestBenchPostFix
Specify suffix to test bench name

Settings
'testbench suffix'

Default: '_tb'.

Specify the suffix to testbench name as a character vector.

For example, if the name of your DUT is my_test, HDL Coder adds the postfix _tb to
form the name my_test_tb.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
MultifileTestBench, TestBenchDataPostFix

 TestBenchPostFix

4-59

TestBenchReferencePostFix
Specify text appended to names of reference signals generated in test bench code

Settings
'Signal name postfix'

Default: '_ref'.

Reference signal data is represented as arrays in the generated test bench code. HDL
Coder appends the character vector that TestBenchReferencePostFix specifies to the
generated signal names.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

4 Properties — Alphabetical List

4-60

UseFileIOInTestBench
Specify whether to use data files for reading and writing test bench stimulus and
reference data

Settings
'on' (default)

Selected (default)

Create and use data files for reading and writing test bench stimulus and reference data.

'off'

Cleared

Generated test bench contains stimulus and reference data as constants.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 UseFileIOInTestBench

4-61

Class reference for HDL code
generation from Simulink

5

hdlcoder.FloatingPointTargetConfig class
Package: hdlcoder

Specify floating-point target configuration for floating-point library

Description
The hdlcoder.FloatingPointTargetConfig object sets options for HDL Coder to
generate synthesizable floating-point code. To create an
hdlcoder.FloatingPointTargetConfig object for a floating-point library, use the
hdlcoder.createFloatingPointTargetConfig function. You can create a floating-
point configuration object for these floating-point libraries:

• Native Floating Point
• Altera Megafunctions (ALTERA FP Functions)
• Altera Megafunctions (ALTFP)
• Xilinx LogiCORE®

Construction
fpconfig = hdlcoder.createFloatingPointConfig(library) creates an
hdlcoder.FloatingPointTargetConfig object for a floating-point library.

fpconfig = hdlcoder.createFloatingPointConfig(library,Name,Value)
creates an hdlcoder.FloatingPointTargetConfig object with additional options
specified by one or more Name,Value pair arguments. Name can also be a property name
on page 5-3 and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The name-value pair arguments that you can specify depend on the library that you select
for creating the floating-point configuration.

5 Class reference for HDL code generation from Simulink

5-2

Input Arguments
Library — Floating point library name
None (default) | NATIVEFLOATINGPOINT | ALTERAFPFUNCTIONS | ALTFP |
XILINXLOGICORE

Floating-point library name, specified as a character vector
Example: 'ALTERAFPFUNCTIONS'

Properties
Native Floating Point

HandleDenormals — Specify whether to handle denormal numbers in your design
'off' (default) | 'on'

Specify whether you want HDL Coder to handle denormal numbers in your design.
Specify this property as a character vector. Denormal numbers are nonzero numbers that
are smaller than the smallest normal number.

LatencyStrategy — Specify whether to use maximum or minimum latency for
the native floating-point operator
'MAX' (default) | 'MIN' | 'ZERO'

Specify whether you want HDL Coder to use maximum or minimum latency setting for the
floating-operators that your design uses. Specify this property as a character vector.

MantissaMultiplyStrategy — Specify how you want HDL Coder to implement
the mantissa multiplication operation when your design uses floating-point
multipliers
'FullMultiplier' (default) | 'PartMultiplierPartAddShift' |
'NoMultiplierFullAddShift'

Specify how you want HDL Coder to implement the mantissa multiplication process for
floating-point multipliers in your design. With this option, you can control the DSP usage
on the target platform for your design. To learn more, see “Mantissa Multiplier Strategy”.

 hdlcoder.FloatingPointTargetConfig class

5-3

Altera FP Functions

InitializeIPPipelinesToZero — Specify whether to initialize pipeline registers
in the Altera Megafunction IP to zero
true (default) | false

Specify whether you want HDL Coder to initialize pipeline registers in the Altera
Megafunction IP to zero. Specify this property as a logical. To avoid potential numerical
mismatches in the HDL simulation, leave InitializeIPPipelinesToZero set to true.

ALTFP and Xilinx LogiCORE

LatencyStrategy — Specify whether to use maximum or minimum latency when
mapping your design to FPGA floating-point target libraries
'MIN' (default) | 'MAX'

Specify whether you want the design to map to minimum or maximum latency with Xilinx
LogiCORE or Altera Megafunction IP. Specify this property as a character vector.

Objective — Specify whether to optimize the design for speed or area when
mapping your design to FPGA floating-point target libraries
'SPEED' (default) | 'AREA'

Specify whether you want the design to map to minimum or maximum latency with Xilinx
LogiCORE or Altera Megafunction IP. Specify this property as a character vector.

Methods

createFloatingPointTargetConfig
Create floating-point target configuration for floating-
point library that you specify

Examples

5 Class reference for HDL code generation from Simulink

5-4

Create Floating-Point Configuration with Native Floating Point and Generate
Code

This example shows how to create a floating-point target configuration with the native
floating-point support in HDL Coder, and then generate code.

Create a Floating-Point Target Configuration

To create a floating-point configuration, use hdlcoder.createFloatingPointTargetConfig.

load_system('sfir_single');
fpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT')

fpconfig =

 FloatingPointTargetConfig with properties:

 Library: 'NativeFloatingPoint'
 LibrarySettings: [1×1 fpconfig.NFPLatencyDrivenMode]
 IPConfig: [1×1 hdlcoder.FloatingPointTargetConfig.IPConfig]

Specify Custom Library Settings

Optionally, to customize the floating-point configuration, specify custom library settings.

fpconfig.LibrarySettings.HandleDenormals = 'off';
fpconfig.LibrarySettings.LatencyStrategy = 'MIN';
fpconfig.LibrarySettings.MantissaMultiplyStrategy = 'NoMultiplierFullAddShift';
fpconfig.LibrarySettings

ans =

 NFPLatencyDrivenMode with properties:

 LatencyStrategy: 'MIN'
 HandleDenormals: 'off'
 MantissaMultiplyStrategy: 'NoMultiplierFullAddShift'
 Version: '1.0.0'

 hdlcoder.FloatingPointTargetConfig class

5-5

View Latency of Native Floating Point Operators

The IPConfig object displays the maximum amd minimum latency values of the floating-
point operators.

fpconfig.IPConfig

ans =

 Name DataType MaxLatency MinLatency
 __________ _______________________ __________ __________

 'ABS' 'SINGLE' 0 0
 'ADDSUB' 'SINGLE' 12 7
 'ATAN' 'SINGLE' 36 36
 'ATAN2' 'SINGLE' 42 42
 'CONVERT' 'NUMERICTYPE_TO_SINGLE' 6 6
 'CONVERT' 'SINGLE_TO_NUMERICTYPE' 6 6
 'COS' 'SINGLE' 27 27
 'DIV' 'SINGLE' 32 32
 'EXP' 'SINGLE' 23 23
 'FIX' 'SINGLE' 3 3
 'LOG' 'SINGLE' 20 20
 'MINMAX' 'SINGLE' 3 3
 'MOD' 'SINGLE' 0 0
 'MUL' 'SINGLE' 8 8
 'POW2' 'SINGLE' 2 2
 'RECIP' 'SINGLE' 19 19
 'RELOP' 'SINGLE' 3 3
 'REM' 'SINGLE' 0 0
 'ROUNDING' 'SINGLE' 5 5
 'RSQRT' 'SINGLE' 17 17
 'SIGNUM' 'SINGLE' 0 0
 'SIN' 'SINGLE' 27 27
 'SINCOS' 'SINGLE' 27 27
 'SQRT' 'SINGLE' 28 28
 'UMINUS' 'SINGLE' 0 0

Generate Code

makehdl('sfir_single/symmetric_fir','FloatingPointTargetConfiguration',fpconfig, ...
 'TargetDirectory','C:/NativeFloatingPoint/hdlsrc')

5 Class reference for HDL code generation from Simulink

5-6

Generating HDL for 'sfir_single/symmetric_fir'.
Starting HDL check.
The code generation and optimization options you have chosen have introduced additional pipeline delays.
The delay balancing feature has automatically inserted matching delays for compensation.
The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.
Output port 0: 30 cycles.
Output port 1: 30 cycles.
Begin VHDL Code Generation for 'sfir_single'.
Working on sfir_single/symmetric_fir/nfp_add_comp as C:\NativeFloatingPoint\hdlsrc\sfir_single\nfp_add_comp.vhd.
Working on sfir_single/symmetric_fir/nfp_mul_comp as C:\NativeFloatingPoint\hdlsrc\sfir_single\nfp_mul_comp.vhd.
Working on sfir_single/symmetric_fir as C:\NativeFloatingPoint\hdlsrc\sfir_single\symmetric_fir.vhd.
Generating package file C:\NativeFloatingPoint\hdlsrc\sfir_single\symmetric_fir_pkg.vhd.
Creating HDL Code Generation Check Report file://C:\NativeFloatingPoint\hdlsrc\sfir_single\symmetric_fir_report.html
HDL check for 'sfir_single' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

The generated VHDL code is saved in the hdlsrc folder.

See Also
hdlcoder.FloatingPointTargetConfig.IPConfig |
hdlcoder.FloatingPointTargetConfig.IPConfig.customize

Topics
“FPGA Floating-Point Library IP Mapping”
“Single Precision Floating Point Support: Field-Oriented Control Algorithm”
“Share Floating-Point IPs”
“Generate HDL Code for FPGA Floating-Point Target Libraries”
“Customize Floating-Point IP Configuration”
“Generate Target-Independent HDL Code with Native Floating-Point”

Introduced in R2016b

 hdlcoder.FloatingPointTargetConfig class

5-7

createFloatingPointTargetConfig
Class: hdlcoder.FloatingPointTargetConfig
Package: hdlcoder

Create floating-point target configuration for floating-point library that you specify

Syntax
fpconfig = hdlcoder.createFloatingPointConfig(library)
fpconfig = hdlcoder.createFloatingPointConfig(library,Name,Value)

Description
To create a floating-point target configuration object for a floating-point library, use the
hdlcoder.createFloatingPointTargetConfig function. You can create a floating-
point configuration object for these libraries:

• Native Floating Point
• Altera Megafunctions (ALTERA FP Functions)
• Altera Megafunctions (ALTFP)
• Xilinx LogiCORE

fpconfig = hdlcoder.createFloatingPointConfig(library) creates an
hdlcoder.FloatingPointTargetConfig object for a given floating-point library.

fpconfig = hdlcoder.createFloatingPointConfig(library,Name,Value)
creates an hdlcoder.FloatingPointTargetConfig object with additional options
specified by one or more Name,Value pair arguments. Name can also be a property name
and Value is the corresponding value. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

5 Class reference for HDL code generation from Simulink

5-8

Input Arguments
Library — Floating point library name
None (default) | NATIVEFLOATINGPOINT | ALTERAFPFUNCTIONS | ALTFP |
XILINXLOGICORE

Floating-point library name, specified as a character vector
Example: 'ALTERAFPFUNCTIONS'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The name-value pair arguments that you can specify depend on the library that you select
for creating the floating-point configuration.

Native Floating Point

HandleDenormals — Specify whether to handle denormal numbers in your design
'off' (default) | 'on'

Specify whether you want HDL Coder to handle denormal numbers in your design.
Specify this property as a character vector. Denormal numbers are nonzero numbers that
are smaller than the smallest normal number. To specify this property, for Library,
select NATIVEFLOATINGPOINT.

LatencyStrategy — Specify whether to use maximum or minimum latency for
the native floating-point operator
'MAX' (default) | 'MIN' | 'ZERO'

Specify whether you want HDL Coder to use maximum or minimum latency setting for the
floating-operators that your design uses. Specify this property as a character vector. To
specify this property, for Library, select NATIVEFLOATINGPOINT

 createFloatingPointTargetConfig

5-9

MantissaMultiplyStrategy — Specify how you want HDL Coder to implement
the mantissa multiplication operation when your design uses floating-point
multipliers
'FullMultiplier' (default) | 'PartMultiplierPartAddShift' |
'NoMultiplierFullAddShift'

Specify how you want HDL Coder to implement the mantissa multiplication process for
floating-point multipliers in your design. With this option, you can control the DSP usage
on the target platform for your design. To learn more, see “Mantissa Multiplier Strategy”.

Altera FP Functions

InitializeIPPipelinesToZero — Specify whether to initialize pipeline registers
in the Altera Megafunction IP to zero
true (default) | false

Specify whether you want HDL Coder to initialize pipeline registers in the Altera
Megafunction IP to zero. Specify this property as a logical. To avoid potential numerical
mismatches in the HDL simulation, leave InitializeIPPipelinesToZero set to true.
To specify this property, for Library, select ALTERAFPFUNCTIONS.

ALTFP and Xilinx LogiCORE

LatencyStrategy — Specify whether to use maximum or minimum latency when
mapping your design to FPGA floating-point target libraries
'MIN' (default) | 'MAX'

Specify whether you want the design to map to minimum or maximum latency with Xilinx
LogiCORE or Altera Megafunction IP. Specify this property as a character vector.

Objective — Specify whether to optimize the design for speed or area when
mapping your design to FPGA floating-point target libraries
'SPEED' (default) | 'AREA'

Specify whether you want the design to map to minimum or maximum latency with Xilinx
LogiCORE or Altera Megafunction IP. Specify this property as a character vector.

Examples

5 Class reference for HDL code generation from Simulink

5-10

Create Floating-Point Configuration with Native Floating Point and Generate
Code

This example shows how to create a floating-point target configuration with the native
floating-point support in HDL Coder, and then generate code.

Create a Floating-Point Target Configuration

To create a floating-point configuration, use hdlcoder.createFloatingPointTargetConfig.

load_system('sfir_single');
fpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT')

fpconfig =

 FloatingPointTargetConfig with properties:

 Library: 'NativeFloatingPoint'
 LibrarySettings: [1×1 fpconfig.NFPLatencyDrivenMode]
 IPConfig: [1×1 hdlcoder.FloatingPointTargetConfig.IPConfig]

Specify Custom Library Settings

Optionally, to customize the floating-point configuration, specify custom library settings.

fpconfig.LibrarySettings.HandleDenormals = 'off';
fpconfig.LibrarySettings.LatencyStrategy = 'MIN';
fpconfig.LibrarySettings.MantissaMultiplyStrategy = 'NoMultiplierFullAddShift';
fpconfig.LibrarySettings

ans =

 NFPLatencyDrivenMode with properties:

 LatencyStrategy: 'MIN'
 HandleDenormals: 'off'
 MantissaMultiplyStrategy: 'NoMultiplierFullAddShift'
 Version: '1.0.0'

 createFloatingPointTargetConfig

5-11

View Latency of Native Floating Point Operators

The IPConfig object displays the maximum amd minimum latency values of the floating-
point operators.

fpconfig.IPConfig

ans =

 Name DataType MaxLatency MinLatency
 __________ _______________________ __________ __________

 'ABS' 'SINGLE' 0 0
 'ADDSUB' 'SINGLE' 12 7
 'ATAN' 'SINGLE' 36 36
 'ATAN2' 'SINGLE' 42 42
 'CONVERT' 'NUMERICTYPE_TO_SINGLE' 6 6
 'CONVERT' 'SINGLE_TO_NUMERICTYPE' 6 6
 'COS' 'SINGLE' 27 27
 'DIV' 'SINGLE' 32 32
 'EXP' 'SINGLE' 23 23
 'FIX' 'SINGLE' 3 3
 'LOG' 'SINGLE' 20 20
 'MINMAX' 'SINGLE' 3 3
 'MOD' 'SINGLE' 0 0
 'MUL' 'SINGLE' 8 8
 'POW2' 'SINGLE' 2 2
 'RECIP' 'SINGLE' 19 19
 'RELOP' 'SINGLE' 3 3
 'REM' 'SINGLE' 0 0
 'ROUNDING' 'SINGLE' 5 5
 'RSQRT' 'SINGLE' 17 17
 'SIGNUM' 'SINGLE' 0 0
 'SIN' 'SINGLE' 27 27
 'SINCOS' 'SINGLE' 27 27
 'SQRT' 'SINGLE' 28 28
 'UMINUS' 'SINGLE' 0 0

Generate Code

makehdl('sfir_single/symmetric_fir','FloatingPointTargetConfiguration',fpconfig, ...
 'TargetDirectory','C:/NativeFloatingPoint/hdlsrc')

5 Class reference for HDL code generation from Simulink

5-12

Generating HDL for 'sfir_single/symmetric_fir'.
Starting HDL check.
The code generation and optimization options you have chosen have introduced additional pipeline delays.
The delay balancing feature has automatically inserted matching delays for compensation.
The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.
Output port 0: 30 cycles.
Output port 1: 30 cycles.
Begin VHDL Code Generation for 'sfir_single'.
Working on sfir_single/symmetric_fir/nfp_add_comp as C:\NativeFloatingPoint\hdlsrc\sfir_single\nfp_add_comp.vhd.
Working on sfir_single/symmetric_fir/nfp_mul_comp as C:\NativeFloatingPoint\hdlsrc\sfir_single\nfp_mul_comp.vhd.
Working on sfir_single/symmetric_fir as C:\NativeFloatingPoint\hdlsrc\sfir_single\symmetric_fir.vhd.
Generating package file C:\NativeFloatingPoint\hdlsrc\sfir_single\symmetric_fir_pkg.vhd.
Creating HDL Code Generation Check Report file://C:\NativeFloatingPoint\hdlsrc\sfir_single\symmetric_fir_report.html
HDL check for 'sfir_single' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

The generated VHDL code is saved in the hdlsrc folder.

See Also
hdlcoder.FloatingPointTargetConfig.IPConfig |
hdlcoder.FloatingPointTargetConfig.IPConfig.customize

Topics
“FPGA Floating-Point Library IP Mapping”
“Single Precision Floating Point Support: Field-Oriented Control Algorithm”
“Share Floating-Point IPs”
“Generate HDL Code for FPGA Floating-Point Target Libraries”
“Customize Floating-Point IP Configuration”
“Generate Target-Independent HDL Code with Native Floating-Point”

 createFloatingPointTargetConfig

5-13

hdlcoder.FloatingPointTargetConfig.IPConfig
class
Package: hdlcoder

Specify IP settings for selected floating-point configuration

Description
Use the hdlcoder.FloatingPointTargetConfig.IPConfig object to see the list of
supported IP blocks for a floating-point library. The IP configuration depends on the
library settings. The library settings are specific to the floating-point library that you
choose.

1 Create a floating-point target configuration object for the library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');
2 To see the IP settings, use the IPConfig object.

fpconfig.IPConfig

Optionally, to customize the IP configuration, use the customize method of the floating-
point configuration object.

Construction
fpconfig.IPConfig shows the IP settings for the fpconfig floating-point target
configuration that you create for the floating-point library.

Methods

customize Customize IP configuration for specified floating-point library

5 Class reference for HDL code generation from Simulink

5-14

Examples

Create and Customize Floating Point Configuration and Generate Code

This example shows how to create a floating-point target configuration with Altera®
Megafunctions (ALTFP) in HDL Coder, and then generate code.

Create a Floating-Point Target Configuration

To create a floating-point configuration, use hdlcoder.createFloatingPointTargetConfig.
Before creating a configuration, set up the path to your synthesis tool.

hdlsetuptoolpath('ToolName', 'Altera Quartus II', ...
 'ToolPath', 'C:/Altera/16.0/quartus/bin64/quartus.exe');
load_system('sfir_single')
fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP')

Prepending following Altera Quartus II path(s) to the system path:
C:\Altera\16.0\quartus\bin64

fpconfig =

 FloatingPointTargetConfig with properties:

 Library: 'ALTFP'
 LibrarySettings: [1×1 fpconfig.LatencyDrivenMode]
 IPConfig: [1×1 hdlcoder.FloatingPointTargetConfig.IPConfig]

Specify Custom Library Settings

Optionally, to customize the floating-point configuration, specify custom library settings.

fpconfig.LibrarySettings.LatencyStrategy = 'MAX';
fpconfig.LibrarySettings.Objective = 'AREA';
fpconfig.LibrarySettings

ans =

 LatencyDrivenMode with properties:

 LatencyStrategy: 'MAX'

 hdlcoder.FloatingPointTargetConfig.IPConfig class

5-15

 Objective: 'AREA'

View Latency of Floating-Point IPs

The IPConfig object displays the maximum amd minimum latency values of the floating-
point operators.

fpconfig.IPConfig

ans =

 Name DataType MinLatency MaxLatency Latency ExtraArgs
 _________ _______________________ __________ __________ _______ _________

 'ABS' 'DOUBLE' 1 1 -1 ''
 'ABS' 'SINGLE' 1 1 -1 ''
 'ADDSUB' 'DOUBLE' 7 14 -1 ''
 'ADDSUB' 'SINGLE' 7 14 -1 ''
 'CONVERT' 'DOUBLE_TO_NUMERICTYPE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_DOUBLE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_SINGLE' 6 6 -1 ''
 'CONVERT' 'SINGLE_TO_NUMERICTYPE' 6 6 -1 ''
 'COS' 'SINGLE' 35 35 -1 ''
 'DIV' 'DOUBLE' 10 61 -1 ''
 'DIV' 'SINGLE' 6 33 -1 ''
 'EXP' 'DOUBLE' 25 25 -1 ''
 'EXP' 'SINGLE' 17 17 -1 ''
 'LOG' 'DOUBLE' 34 34 -1 ''
 'LOG' 'SINGLE' 21 21 -1 ''
 'MUL' 'DOUBLE' 11 11 -1 ''
 'MUL' 'SINGLE' 11 11 -1 ''
 'RECIP' 'DOUBLE' 27 27 -1 ''
 'RECIP' 'SINGLE' 20 20 -1 ''
 'RELOP' 'DOUBLE' 1 3 -1 ''
 'RELOP' 'SINGLE' 1 3 -1 ''
 'RSQRT' 'DOUBLE' 36 36 -1 ''
 'RSQRT' 'SINGLE' 26 26 -1 ''
 'SIN' 'SINGLE' 36 36 -1 ''
 'SQRT' 'DOUBLE' 30 57 -1 ''
 'SQRT' 'SINGLE' 16 28 -1 ''

5 Class reference for HDL code generation from Simulink

5-16

Customize Latency of ADDSUB IP

Using the customize method of the IPConfig object, you can customize the latency of the
floating-point IP and specify any additional arguments.

fpconfig.IPConfig.customize('ADDSUB','Single','Latency',6);
fpconfig.IPConfig

ans =

 Name DataType MinLatency MaxLatency Latency ExtraArgs
 _________ _______________________ __________ __________ _______ _________

 'ABS' 'DOUBLE' 1 1 -1 ''
 'ABS' 'SINGLE' 1 1 -1 ''
 'ADDSUB' 'DOUBLE' 7 14 -1 ''
 'ADDSUB' 'SINGLE' 7 14 6 ''
 'CONVERT' 'DOUBLE_TO_NUMERICTYPE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_DOUBLE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_SINGLE' 6 6 -1 ''
 'CONVERT' 'SINGLE_TO_NUMERICTYPE' 6 6 -1 ''
 'COS' 'SINGLE' 35 35 -1 ''
 'DIV' 'DOUBLE' 10 61 -1 ''
 'DIV' 'SINGLE' 6 33 -1 ''
 'EXP' 'DOUBLE' 25 25 -1 ''
 'EXP' 'SINGLE' 17 17 -1 ''
 'LOG' 'DOUBLE' 34 34 -1 ''
 'LOG' 'SINGLE' 21 21 -1 ''
 'MUL' 'DOUBLE' 11 11 -1 ''
 'MUL' 'SINGLE' 11 11 -1 ''
 'RECIP' 'DOUBLE' 27 27 -1 ''
 'RECIP' 'SINGLE' 20 20 -1 ''
 'RELOP' 'DOUBLE' 1 3 -1 ''
 'RELOP' 'SINGLE' 1 3 -1 ''
 'RSQRT' 'DOUBLE' 36 36 -1 ''
 'RSQRT' 'SINGLE' 26 26 -1 ''
 'SIN' 'SINGLE' 36 36 -1 ''
 'SQRT' 'DOUBLE' 30 57 -1 ''
 'SQRT' 'SINGLE' 16 28 -1 ''

 hdlcoder.FloatingPointTargetConfig.IPConfig class

5-17

Generate Code

makehdl('sfir_single/symmetric_fir','FloatingPointTargetConfiguration',fpconfig, ...
 'TargetDirectory','C:/FloatingPoint/hdlsrc','SynthesisToolChipFamily','Arria10')

Generating HDL for 'sfir_single/symmetric_fir'.
Starting HDL check.
Using C:\Altera\16.0\quartus\bin64\qmegawiz for the selected floating point IP library.
The code generation and optimization options you have chosen have introduced additional pipeline delays.
The delay balancing feature has automatically inserted matching delays for compensation.
The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.
Output port 0: 30 cycles.
Output port 1: 30 cycles.
Generating Altera(R) megafunction: altfp_add_single for latency of 6.
Found an existing generated file in a previous session: (C:\FloatingPoint\hdlsrc\sfir_single\Altera\Arria10\unspecified\L6\altfp_add_single.vhd). Reusing the generated file.
Done.
Generating Altera(R) megafunction: altfp_mul_single for latency of 11.
Found an existing generated file in a previous session: (C:\FloatingPoint\hdlsrc\sfir_single\Altera\Arria10\unspecified\L11\altfp_mul_single.vhd). Reusing the generated file.
Done.
Begin VHDL Code Generation for 'sfir_single'.
Working on sfir_single/symmetric_fir as C:\FloatingPoint\hdlsrc\sfir_single\symmetric_fir.vhd.
Generating package file C:\FloatingPoint\hdlsrc\sfir_single\symmetric_fir_pkg.vhd.
Creating HDL Code Generation Check Report file://C:\FloatingPoint\hdlsrc\sfir_single\symmetric_fir_report.html
HDL check for 'sfir_single' complete with 0 errors, 7 warnings, and 0 messages.
HDL code generation complete.

The latency of the ADDSUB IP is 6 and not the maximum latency value of 14.

The generated VHDL code is saved in the hdlsrc folder.

See Also
hdlcoder.FloatingPointTargetConfig

Topics
“FPGA Floating-Point Library IP Mapping”
“Single Precision Floating Point Support: Field-Oriented Control Algorithm”
“Share Floating-Point IPs”
“Generate HDL Code for FPGA Floating-Point Target Libraries”
“Customize Floating-Point IP Configuration”
“Generate Target-Independent HDL Code with Native Floating-Point”

5 Class reference for HDL code generation from Simulink

5-18

Introduced in R2016b

 hdlcoder.FloatingPointTargetConfig.IPConfig class

5-19

customize
Class: hdlcoder.FloatingPointTargetConfig.IPConfig
Package: hdlcoder

Customize IP configuration for specified floating-point library

Syntax
fpconfig.IPConfig.customize(Name,DataType,Name,Value)

Description
fpconfig.IPConfig.customize(Name,DataType,Name,Value) customizes the
fpconfig floating-point configuration with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
Name — Name of the floating-point IP
'' (default) | character vector

Name of the floating-point IP to customize, specified as a character vector.
Example: 'ADDSUB'

DataType — Data type of the floating-point IP
'' (default) | character vector

Data type of the floating-point IP to customize, specified as a character vector.
Example: 'SINGLE'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

5 Class reference for HDL code generation from Simulink

5-20

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Latency — Latency of the floating-point IP
-1 (default) | positive integer

Specify a custom latency value for the floating-point IP as an integer.
Example: fpconfig.IPConfig.customize('ADDSUB','Double','Latency', 6)
specifies a custom latency value of 6 for the ADDSUB IP.

ExtraArgs — Specify any additional arguments of the floating-point IP
'' (default) | character vector

Specify any additional arguments of the floating-point IP as a character vector.
Example: fpconfig.IPConfig.customize('ADDSUB','Double','Latency',
6,'ExtraArgs','CSET c_mult_usage=Full_Usage') specifies that you want to use
DSP blocks on the target device.

Examples

Create and Customize Floating Point Configuration and Generate Code

This example shows how to create a floating-point target configuration with Altera®
Megafunctions (ALTFP) in HDL Coder, and then generate code.

Create a Floating-Point Target Configuration

To create a floating-point configuration, use hdlcoder.createFloatingPointTargetConfig.
Before creating a configuration, set up the path to your synthesis tool.

hdlsetuptoolpath('ToolName', 'Altera Quartus II', ...
 'ToolPath', 'C:/Altera/16.0/quartus/bin64/quartus.exe');
load_system('sfir_single')
fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP')

Prepending following Altera Quartus II path(s) to the system path:
C:\Altera\16.0\quartus\bin64

fpconfig =

 customize

5-21

 FloatingPointTargetConfig with properties:

 Library: 'ALTFP'
 LibrarySettings: [1×1 fpconfig.LatencyDrivenMode]
 IPConfig: [1×1 hdlcoder.FloatingPointTargetConfig.IPConfig]

Specify Custom Library Settings

Optionally, to customize the floating-point configuration, specify custom library settings.

fpconfig.LibrarySettings.LatencyStrategy = 'MAX';
fpconfig.LibrarySettings.Objective = 'AREA';
fpconfig.LibrarySettings

ans =

 LatencyDrivenMode with properties:

 LatencyStrategy: 'MAX'
 Objective: 'AREA'

View Latency of Floating-Point IPs

The IPConfig object displays the maximum amd minimum latency values of the floating-
point operators.

fpconfig.IPConfig

ans =

 Name DataType MinLatency MaxLatency Latency ExtraArgs
 _________ _______________________ __________ __________ _______ _________

 'ABS' 'DOUBLE' 1 1 -1 ''
 'ABS' 'SINGLE' 1 1 -1 ''
 'ADDSUB' 'DOUBLE' 7 14 -1 ''
 'ADDSUB' 'SINGLE' 7 14 -1 ''
 'CONVERT' 'DOUBLE_TO_NUMERICTYPE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_DOUBLE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_SINGLE' 6 6 -1 ''
 'CONVERT' 'SINGLE_TO_NUMERICTYPE' 6 6 -1 ''

5 Class reference for HDL code generation from Simulink

5-22

 'COS' 'SINGLE' 35 35 -1 ''
 'DIV' 'DOUBLE' 10 61 -1 ''
 'DIV' 'SINGLE' 6 33 -1 ''
 'EXP' 'DOUBLE' 25 25 -1 ''
 'EXP' 'SINGLE' 17 17 -1 ''
 'LOG' 'DOUBLE' 34 34 -1 ''
 'LOG' 'SINGLE' 21 21 -1 ''
 'MUL' 'DOUBLE' 11 11 -1 ''
 'MUL' 'SINGLE' 11 11 -1 ''
 'RECIP' 'DOUBLE' 27 27 -1 ''
 'RECIP' 'SINGLE' 20 20 -1 ''
 'RELOP' 'DOUBLE' 1 3 -1 ''
 'RELOP' 'SINGLE' 1 3 -1 ''
 'RSQRT' 'DOUBLE' 36 36 -1 ''
 'RSQRT' 'SINGLE' 26 26 -1 ''
 'SIN' 'SINGLE' 36 36 -1 ''
 'SQRT' 'DOUBLE' 30 57 -1 ''
 'SQRT' 'SINGLE' 16 28 -1 ''

Customize Latency of ADDSUB IP

Using the customize method of the IPConfig object, you can customize the latency of the
floating-point IP and specify any additional arguments.

fpconfig.IPConfig.customize('ADDSUB','Single','Latency',6);
fpconfig.IPConfig

ans =

 Name DataType MinLatency MaxLatency Latency ExtraArgs
 _________ _______________________ __________ __________ _______ _________

 'ABS' 'DOUBLE' 1 1 -1 ''
 'ABS' 'SINGLE' 1 1 -1 ''
 'ADDSUB' 'DOUBLE' 7 14 -1 ''
 'ADDSUB' 'SINGLE' 7 14 6 ''
 'CONVERT' 'DOUBLE_TO_NUMERICTYPE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_DOUBLE' 6 6 -1 ''
 'CONVERT' 'NUMERICTYPE_TO_SINGLE' 6 6 -1 ''
 'CONVERT' 'SINGLE_TO_NUMERICTYPE' 6 6 -1 ''
 'COS' 'SINGLE' 35 35 -1 ''
 'DIV' 'DOUBLE' 10 61 -1 ''
 'DIV' 'SINGLE' 6 33 -1 ''

 customize

5-23

 'EXP' 'DOUBLE' 25 25 -1 ''
 'EXP' 'SINGLE' 17 17 -1 ''
 'LOG' 'DOUBLE' 34 34 -1 ''
 'LOG' 'SINGLE' 21 21 -1 ''
 'MUL' 'DOUBLE' 11 11 -1 ''
 'MUL' 'SINGLE' 11 11 -1 ''
 'RECIP' 'DOUBLE' 27 27 -1 ''
 'RECIP' 'SINGLE' 20 20 -1 ''
 'RELOP' 'DOUBLE' 1 3 -1 ''
 'RELOP' 'SINGLE' 1 3 -1 ''
 'RSQRT' 'DOUBLE' 36 36 -1 ''
 'RSQRT' 'SINGLE' 26 26 -1 ''
 'SIN' 'SINGLE' 36 36 -1 ''
 'SQRT' 'DOUBLE' 30 57 -1 ''
 'SQRT' 'SINGLE' 16 28 -1 ''

Generate Code

makehdl('sfir_single/symmetric_fir','FloatingPointTargetConfiguration',fpconfig, ...
 'TargetDirectory','C:/FloatingPoint/hdlsrc','SynthesisToolChipFamily','Arria10')

Generating HDL for 'sfir_single/symmetric_fir'.
Starting HDL check.
Using C:\Altera\16.0\quartus\bin64\qmegawiz for the selected floating point IP library.
The code generation and optimization options you have chosen have introduced additional pipeline delays.
The delay balancing feature has automatically inserted matching delays for compensation.
The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.
Output port 0: 30 cycles.
Output port 1: 30 cycles.
Generating Altera(R) megafunction: altfp_add_single for latency of 6.
Found an existing generated file in a previous session: (C:\FloatingPoint\hdlsrc\sfir_single\Altera\Arria10\unspecified\L6\altfp_add_single.vhd). Reusing the generated file.
Done.
Generating Altera(R) megafunction: altfp_mul_single for latency of 11.
Found an existing generated file in a previous session: (C:\FloatingPoint\hdlsrc\sfir_single\Altera\Arria10\unspecified\L11\altfp_mul_single.vhd). Reusing the generated file.
Done.
Begin VHDL Code Generation for 'sfir_single'.
Working on sfir_single/symmetric_fir as C:\FloatingPoint\hdlsrc\sfir_single\symmetric_fir.vhd.
Generating package file C:\FloatingPoint\hdlsrc\sfir_single\symmetric_fir_pkg.vhd.
Creating HDL Code Generation Check Report file://C:\FloatingPoint\hdlsrc\sfir_single\symmetric_fir_report.html
HDL check for 'sfir_single' complete with 0 errors, 7 warnings, and 0 messages.
HDL code generation complete.

The latency of the ADDSUB IP is 6 and not the maximum latency value of 14.

5 Class reference for HDL code generation from Simulink

5-24

The generated VHDL code is saved in the hdlsrc folder.

Tips
Before using this function, create a floating-point target configuration object for the
floating-point library that you specify. Select library as Altera Megafunctions
(ALTERA FP FUNCTIONS), Altera Megafunctions (ALTFP), or Xilinx LogiCORE.

This example creates a floating-point target configuration for the Altera
Megafunctions (ALTFP) library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');

See Also
hdlcoder.FloatingPointTargetConfig

Topics
“FPGA Floating-Point Library IP Mapping”
“Share Floating-Point IPs”
“Generate HDL Code for FPGA Floating-Point Target Libraries”
“Customize Floating-Point IP Configuration”

Introduced in R2016b

 customize

5-25

hdlcoder.WorkflowConfig class
Package: hdlcoder

Configure HDL code generation and deployment workflows

Description
Use the hdlcoder.WorkflowConfig object to set HDL workflow options for the
hdlcoder.runWorkflow function. You can customize the hdlcoder.WorkflowConfig
object for these workflows:

• Generic ASIC/FPGA
• FPGA-in-the-Loop (requires HDL Verifier)
• FPGA Turnkey
• IP Core Generation
• Simulink Real-Time FPGA I/O (requires Simulink Real-Time™)

A best practice is to use the HDL Workflow Advisor to configure the workflow, and then
export a workflow script. The commands in the workflow script create and configure the
hdlcoder.WorkflowConfig object. See “Run HDL Workflow with a Script”.

Construction
hdlcoder.WorkflowConfig(Name,Value) creates a workflow configuration object for
you to specify your HDL code generation and deployment workflows, with additional
options specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

5 Class reference for HDL code generation from Simulink

5-26

SynthesisTool — Synthesis tool name
'Xilinx Vivado' (default) | 'Altera QUARTUS II' | 'Xilinx ISE'

Name of the synthesis tool, specified as a character vector.
Example: 'SynthesisTool','Altera QUARTUS II' creates a workflow configuration
object with 'Altera QUARTUS II' as the synthesis tool and 'Generic ASIC/FPGA' as
the target workflow.

TargetWorkflow — Specify the target workflow
'Generic ASIC/FPGA' (default) | 'FPGA Turnkey' | 'IP Core Generation' |
'FPGA-in-the-Loop' | 'Simulink Real-Time FPGA I/O'

Target workflow for HDL code generation, specified as a character vector.
Example: 'TargetWorkflow','IP Core Generation' creates a workflow
configuration object with 'Xilinx Vivado' as the synthesis tool and 'IP Core
Generation' as the target workflow.

Properties
Generic ASIC/FPGA Workflow

ProjectFolder — Folder for generated project files
'' (default) | character vector

Path to the folder where your generated project files are saved, specified as a character
vector.
Example: 'project_file_folder'

Objective — Synthesis tool objective
hdlcoder.Objective.None (default) | hdlcoder.Objective.SpeedOptimized |
hdlcoder.Objective.AreaOptimized | hdlcoder.Objective.CompileOptimized

High-level synthesis tool objective, specified as one of these values.

hdlcoder.Objective.None (default) Do not generate additional Tcl commands.
hdlcoder.Objective.SpeedOptimized Generate synthesis tool Tcl commands to

optimize for speed.

 hdlcoder.WorkflowConfig class

5-27

hdlcoder.Objective.AreaOptimized Generate synthesis tool Tcl commands to
optimize for area.

hdlcoder.Objective.CompileOptimize
d

Generate synthesis tool Tcl commands to
optimize for compilation time.

If your synthesis tool is Xilinx ISE and your target workflow is Generic ASIC/FPGA or
FPGA Turnkey, set the Objective to hdlcoder.Objective.None.

For the tool-specific Tcl commands that are added to the synthesis project creation Tcl
script, see “Synthesis Objective to Tcl Command Mapping”.

RunTaskGenerateRTLCodeAndTestbench — Enable task to generate code and
test bench
true (default) | false

Enable or disable workflow task to generate code and test bench, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Generate RTL Code and Testbench task.

RunTaskVerifyWithHDLCosimulation — Enable task to verify generated code
with HDL cosimulation
true (default) | false

Enable or disable task to verify the generated code with HDL cosimulation, specified as a
logical. This option takes effect only when GenerateCosimulationModel is true.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Verify with HDL Cosimulation task.

RunTaskCreateProject — Enable task to create synthesis tool project
true (default) | false

Enable or disable task to create a synthesis tool project, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Create Project task.

RunTaskPerformLogicSynthesis — Enable task to launch synthesis tool and run
logic synthesis
true (default) | false

5 Class reference for HDL code generation from Simulink

5-28

Enable or disable task to launch the synthesis tool and run logic synthesis, specified as a
logical. This task is available only when your synthesis tool is Xilinx ISE or Altera
Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Logic Synthesis task.

RunTaskPerformMapping — Enable task to map synthesized logic to target
device
true (default) | false

Enable or disable task to map the synthesized logic to the target device, specified as a
logical. This task is available only when your synthesis tool is Xilinx ISE or Altera
Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Mapping task.

RunTaskPerformPlaceAndRoute — Enable task to run place and route process
true (default) | false

Enable or disable task to run the place and route process, specified as a logical. This
task is available only when your synthesis tool is Xilinx ISE or Altera Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Place and Route task.

RunTaskRunSynthesis — Enable task to launch Xilinx Vivado and run synthesis
true (default) | false

Enable or disable task to launch Xilinx Vivado and run synthesis, specified as a logical.
This task is available only when your synthesis tool is Xilinx Vivado.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Run Synthesis task.

RunTaskRunImplementation — Enable task to launch Xilinx Vivado and run
implementation
true (default) | false

Enable or disable task to launch Xilinx Vivado and run the implementation step, specified
as a logical. This task is available only when your synthesis tool is Xilinx Vivado.

 hdlcoder.WorkflowConfig class

5-29

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Run Implementation task.

RunTaskAnnotateModelWithSynthesisResult — Enable task to analyze timing
information and highlight critical paths
true (default) | false

Enable or disable task to analyze pre- or post-routing timing information and highlight
critical paths in your model, specified as a logical. This task is available only when the
target workflow is Generic ASIC/FPGA.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Annotate Model with Synthesis Result task.

GenerateRTLCode — Generate HDL code
true (default) | false

Option to generate HDL code in the target language, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > HDL
Code Generation > Generate RTL Code and Testbench task.

GenerateTestbench — Generate HDL test bench
false (default) | true

Option to generate an HDL test bench in the target language, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > HDL
Code Generation > Generate RTL Code and Testbench task.

GenerateValidationModel — Generate validation model
false (default) | true

Generate a validation model, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > HDL
Code Generation > Generate RTL Code and Testbench task.

AdditionalProjectCreationTclFiles — Additional project creation Tcl files to
include in your synthesis project
'' (default) | character vector

5 Class reference for HDL code generation from Simulink

5-30

Additional project creation Tcl files that you want to include in your synthesis project,
specified as a character vector.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Create Project task.
Example: 'L:\file1.tcl;L:\file2.tcl;'

SkipPreRouteTimingAnalysis — Skip pre-route timing analysis logical
false (default) | true

Skip pre-route timing analysis, specified as a logical. If your tool does not support early
timing estimation, set to true.

When you enable this option, CriticalPathSource is set to 'post-route'

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Perform Synthesis and P/R > Perform Mapping task.

IgnorePlaceAndRouteErrors — Ignore place and route errors
false (default) | true

Ignore place and route errors, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Perform Synthesis and P/R > Perform Place and route
task.

CriticalPathSource — Critical path source
'pre-route' (default) | 'post-route'

Critical path source, specified as a character vector.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Perform Synthesis and P/R > Perform Mapping task.

CriticalPathNumber — Number of critical paths to annotate
1 (default) | 2 | 3

Number of critical paths to annotate, specified as a positive integer from 1 to 3.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Annotate Model with Synthesis Result task.

 hdlcoder.WorkflowConfig class

5-31

ShowAllPaths — Show all critical paths
false (default) | true

Show all critical paths, including duplicate paths, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Annotate Model with Synthesis Result task.

ShowDelayData — Annotate cumulative timing delay on each critical path
true (default) | false

Annotate the cumulative timing delay on each critical path, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Annotate Model with Synthesis Result task.

ShowUniquePaths — Show only the first instance of a critical path
false (default) | true

Show only the first instance of a critical path that is duplicated, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Annotate Model with Synthesis Result task.

ShowEndsOnly — Show only endpoints of each critical path
false (default) | true

Show the endpoints of each critical path, omitting connecting signal lines, specified as a
logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Annotate Model with Synthesis Result task.

FPGA-in-the-Loop

ProjectFolder — Folder for generated project files
'' (default) | character vector

Path to the folder where your generated project files are saved, specified as a character
vector.
Example: 'project_file_folder'

5 Class reference for HDL code generation from Simulink

5-32

RunTaskGenerateRTLCodeAndTestbench — Enable task to generate code and
test bench
true (default) | false

Enable or disable workflow task to generate code and test bench, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Generate RTL Code and Testbench task.

RunTaskVerifyWithHDLCosimulation — Enable task to verify generated code
with HDL cosimulation
true (default) | false

Enable or disable task to verify the generated code with HDL cosimulation, specified as a
logical. This option takes effect only when GenerateCosimulationModel is true.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Verify with HDL Cosimulation task.

RunTaskBuildFPGAInTheLoop — Enable task to generate a model that contains a
FIL block and a testbench around the FIL block
true (default) | false

Enable or disable task to generate a model that contains a FIL block and a testbench
around the FIL block specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA-in-the-
Loop Implementation > Build FPGA-in-the-Loop task.

GenerateRTLCode — Generate HDL code
true (default) | false

Option to generate HDL code in the target language, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > HDL
Code Generation > Generate RTL Code and Testbench task.

GenerateTestbench — Generate HDL test bench
false (default) | true

Option to generate an HDL test bench in the target language, specified as a logical.

 hdlcoder.WorkflowConfig class

5-33

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > HDL
Code Generation > Generate RTL Code and Testbench task.

GenerateValidationModel — Generate validation model
false (default) | true

Generate a validation model, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > HDL
Code Generation > Generate RTL Code and Testbench task.

IPAddress — IP address of FPGA board
'192.168.0.2' (default) | character vector

IP address of the FPGA board, specified as a character vector. Default address is
'192.168.0.2'.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA-
in-the-Loop Implementation > Set FPGA-in-the-Loop Options task.

MACAddress — MAC address of FPGA board
'00-0A-35-02-21-8A' (default) | character vector

MAC address of the FPGA board, specified as a character vector, for example
'00-0A-35-02-21-8A'. In most cases, you do not have to change the Board MAC
address. If you want to connect more than one FPGA board to a single computer, specify a
unique MAC address for each additional board.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA-
in-the-Loop Implementation > Set FPGA-in-the-Loop Options task.

SourceFiles — Additional HDL source files for verification
'' (default) | character vector

Additional source files for the HDL design that you want to verify on the FPGA board,
specified as a character vector.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA-
in-the-Loop Implementation > Set FPGA-in-the-Loop Options task.

Connection — JTAG or Ethernet connection
'JTAG' (default) | 'Ethernet'

5 Class reference for HDL code generation from Simulink

5-34

Ethernet or JTAG connection type to the FPGA development board, specified as a
character vector.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA-
in-the-Loop Implementation > Set FPGA-in-the-Loop Options task.

RunExternalBuild — Run build process externally
true (default) | false

Option to run build process in parallel with MATLAB, specified as a logical. If this
option is disabled, you cannot use MATLAB until the build is finished.

FPGA Turnkey Workflow

ProjectFolder — Folder for generated project files
'' (default) | character vector

Path to the folder where your generated project files are saved, specified as a character
vector.
Example: 'project_file_folder'

Objective — Synthesis tool objective
hdlcoder.Objective.None (default) | hdlcoder.Objective.SpeedOptimized |
hdlcoder.Objective.AreaOptimized | hdlcoder.Objective.CompileOptimized

High-level synthesis tool objective, specified as one of these values.

hdlcoder.Objective.None (default) Do not generate additional Tcl commands.
hdlcoder.Objective.SpeedOptimized Generate synthesis tool Tcl commands to

optimize for speed.
hdlcoder.Objective.AreaOptimized Generate synthesis tool Tcl commands to

optimize for area.
hdlcoder.Objective.CompileOptimize
d

Generate synthesis tool Tcl commands to
optimize for compilation time.

If your synthesis tool is Xilinx ISE and your target workflow is Generic ASIC/FPGA or
FPGA Turnkey, set the Objective to hdlcoder.Objective.None.

For the tool-specific Tcl commands that are added to the synthesis project creation Tcl
script, see “Synthesis Objective to Tcl Command Mapping”.

 hdlcoder.WorkflowConfig class

5-35

RunTaskGenerateRTLCode — Enable task to generate RTL code and HDL top-level
wrapper
true (default) | false

Enable or disable workflow task to generate RTL code and an HDL top-level wrapper,
specified as a logical. When enabled, this task also generates a constraint file that
contains pin mapping information and clock constraints.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Generate RTL Code task.

RunTaskCreateProject — Enable task to create synthesis tool project
true (default) | false

Enable or disable task to create a synthesis tool project, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Create Project task.

RunTaskPerformLogicSynthesis — Enable task to launch synthesis tool and run
logic synthesis
true (default) | false

Enable or disable task to launch the synthesis tool and run logic synthesis, specified as a
logical. This task is available only when your synthesis tool is Xilinx ISE or Altera
Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Logic Synthesis task.

RunTaskPerformMapping — Enable task to map synthesized logic to target
device
true (default) | false

Enable or disable task to map the synthesized logic to the target device, specified as a
logical. This task is available only when your synthesis tool is Xilinx ISE or Altera
Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Mapping task.

RunTaskPerformPlaceAndRoute — Enable task to run place and route process
true (default) | false

5 Class reference for HDL code generation from Simulink

5-36

Enable or disable task to run the place and route process, specified as a logical. This
task is available only when your synthesis tool is Xilinx ISE or Altera Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Place and Route task.

RunTaskRunSynthesis — Enable task to launch Xilinx Vivado and run synthesis
true (default) | false

Enable or disable task to launch Xilinx Vivado and run synthesis, specified as a logical.
This task is available only when your synthesis tool is Xilinx Vivado.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Run Synthesis task.

RunTaskRunImplementation — Enable task to launch Xilinx Vivado and run
implementation
true (default) | false

Enable or disable task to launch Xilinx Vivado and run the implementation step, specified
as a logical. This task is available only when your synthesis tool is Xilinx Vivado.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Run Implementation task.

RunTaskGenerateProgrammingFile — Enable task to generate FPGA
programming file
true (default) | false

Enable or disable task to generate an FPGA programming file, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Download to
Target > Generate Programming File task.

RunTaskProgramTargetDevice — Enable task to program target device
true (default) | false

Enable or disable task to download the FPGA programming file to the target device,
specified as a logical. This task is available only when the target workflow is FPGA
Turnkey.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Download to
Target > Program Target Device task.

 hdlcoder.WorkflowConfig class

5-37

AdditionalProjectCreationTclFiles — Additional project creation Tcl files to
include in your synthesis project
'' (default) | character vector

Additional project creation Tcl files that you want to include in your synthesis project,
specified as a character vector.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Create Project task.
Example: 'L:\file1.tcl;L:\file2.tcl;'

SkipPreRouteTimingAnalysis — Skip pre-route timing analysis logical
false (default) | true

Skip pre-route timing analysis, specified as a logical. If your tool does not support early
timing estimation, set to true.

When this option is enabled, CriticalPathSource is set to 'post-route'

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Perform Synthesis and P/R > Perform Mapping task.

IgnorePlaceAndRouteErrors — Ignore place and route errors
false (default) | true

Ignore place and route errors, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Perform Synthesis and P/R > Perform Place and route
task.

IP Core Generation Workflow

ProjectFolder — Folder for generated project files
'' (default) | character vector

Path to the folder where your generated project files are saved, specified as a character
vector.
Example: 'project_file_folder'

ReferenceDesignToolVersion — Current reference design tool version
character vector

5 Class reference for HDL code generation from Simulink

5-38

Current reference design tool version, specified as a character vector, for example
'2017.4'. By default, the code generator selects a reference design tool version that is
compatible with the current supported tool version. It is change this default reference
design tool version, HDL Coder generates an error.

In the HDL Workflow Advisor, this setting is in the HDL Workflow Advisor > Set Target
> Set Target Reference Design task.

IgnoreToolVersionMismatch — Ignore mismatch in reference design tool
version
false (default) | true

Whether you want the code generator to ignore a mismatch between the reference design
tool version and the supported tool version, specified as a logical.By default, if there is
a tool version mismatch, HDL Coder generates an error. If you set this option to true,
HDL Coder generates a warning instead.

In the HDL Workflow Advisor, this setting is in the HDL Workflow Advisor > Set Target
> Set Target Reference Design task.

RunTaskGenerateRTLCodeAndIPCore — Enable task to generate code and IP core
true (default) | false

Enable or disable workflow task to generate code and IP core for embedded system,
specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Generate RTL Code and IP Core task.

RunTaskCreateProject — Enable task to create embedded system tool project
true (default) | false

Enable or disable workflow task to create an embedded system tool project, specified as a
logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Embedded
System Integration > Create Project task.

RunTaskGenerateSoftwareInterfaceModel — Enable task to generate software
interface model
true (default) | false

 hdlcoder.WorkflowConfig class

5-39

Enable or disable workflow task to generate a software interface model with IP core
driver blocks for embedded C code generation, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Embedded
System Integration > Generate Software Interface Model task.

RunTaskBuildFPGABitstream — Enable task to generate bitstream for
embedded system
true (default) | false

Enable or disable workflow task to generate a bitstream for the embedded system,
specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Embedded
System Integration > Build FPGA Bitstream task.

RunTaskProgramTargetDevice — Enable task to program connected target
device
false (default) | true

Enable or disable workflow task to program the connected target device, specified as a
logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Embedded
System Integration > Program Target Device task.

IPCoreRepository — IP core repository folder path
'' (default) | character vector

Full path to an IP core repository folder, specified as a character vector. The coder copies
the generated IP core into the IP repository folder.
Example: 'L:\sandbox\work\IPfolder'

GenerateIPCoreReport — Generate HTML documentation for the IP core
true (default) | false

Option to generate HTML documentation for the IP core, specified as a logical. For
details, see “Custom IP Core Report”.

Objective — Synthesis tool objective
hdlcoder.Objective.None (default) | hdlcoder.Objective.SpeedOptimized |
hdlcoder.Objective.AreaOptimized | hdlcoder.Objective.CompileOptimized

5 Class reference for HDL code generation from Simulink

5-40

High-level synthesis tool objective, specified as one of these values.

hdlcoder.Objective.None (default) Do not generate additional Tcl commands.
hdlcoder.Objective.SpeedOptimized Generate synthesis tool Tcl commands to

optimize for speed.
hdlcoder.Objective.AreaOptimized Generate synthesis tool Tcl commands to

optimize for area.
hdlcoder.Objective.CompileOptimize
d

Generate synthesis tool Tcl commands to
optimize for compilation time.

If your synthesis tool is Xilinx ISE and your target workflow is Generic ASIC/FPGA or
FPGA Turnkey, set the Objective to hdlcoder.Objective.None.

For the tool-specific Tcl commands that are added to the synthesis project creation Tcl
script, see “Synthesis Objective to Tcl Command Mapping”.

EnableIPCaching — Create IP cache to reduce reference design synthesis time
false (default) | true

Enable or disable IP caching, specified as a logical. When you enable IP caching, the
code generator creates an IP cache. You can reuse this cache in subsequent project runs,
which reduces reference design synthesis time.

In the HDL Workflow Advisor, you can specify this setting in the Create Project task.

OperatingSystem — Operating system
'' (default) | character vector

Operating system for embedded processor, specified as a character vector. The operating
system is board-specific.

AddLinuxDeviceDriver — Add IP core device driver
false (default) | true

Option to insert the IP core node into the operating system device tree on the SD card on
your board, specified as a logical. This option also restarts the operating system and
adds the IP core driver as a loadable kernel module.

To use this option, your board must be connected.

 hdlcoder.WorkflowConfig class

5-41

RunExternalBuild — Run build process externally
true (default) | false

Option to run build process in parallel with MATLAB, specified as a logical. If this
option is disabled, you cannot use MATLAB until the build is finished.

TclFileForSynthesisBuild — Use custom or default synthesis tool build script
hdlcoder.BuildOption.Default (default) | hdlcoder.BuildOption.Custom

Select whether to use a custom or default synthesis tool build script, specified as one of
these values:

hdlcoder.BuildOption.Default
(default)

Use the default build script.

hdlcoder.BuildOption.Custom Use a custom build script instead of the
default build script.

CustomBuildTclFile — Custom synthesis tool build script file
'' (default) | character vector

Full path to a custom synthesis tool build Tcl script file, specified as a character vector.
The contents of your custom Tcl file are inserted between the Tcl commands that open
and close the project. If TclFileForSynthesisBuild is set to
hdlcoder.BuildOption.Custom, you must specify a file.

If you want to generate a bitstream, the bitstream generation Tcl command must refer to
the top file wrapper name and location either directly or implicitly. For example, this
Xilinx Vivado Tcl command generates a bitstream and implicitly refers to the top file name
and location:

launch_runs impl_1 -to_step write_bitstream

Example: 'C:\Temp\work\build.tcl'

Simulink Real-Time FPGA I/O

ProjectFolder — Folder for generated project files
'' (default) | character vector

Path to the folder where your generated project files are saved, specified as a character
vector.
Example: 'project_file_folder'

5 Class reference for HDL code generation from Simulink

5-42

ReferenceDesignToolVersion — Current reference design tool version
character vector

Current reference design tool version, specified as a character vector, for example
'2017.4'. By default, the code generator selects a reference design tool version that is
compatible with the current supported tool version. It is change this default reference
design tool version, HDL Coder generates an error.

In the HDL Workflow Advisor, this setting is in the HDL Workflow Advisor > Set Target
> Set Target Reference Design task.

IgnoreToolVersionMismatch — Ignore mismatch in reference design tool
version
false (default) | true

Whether you want the code generator to ignore a mismatch between the reference design
tool version and the supported tool version, specified as a logical.By default, if there is
a tool version mismatch, HDL Coder generates an error. If you set this option to true,
HDL Coder generates a warning instead.

In the HDL Workflow Advisor, this setting is in the HDL Workflow Advisor > Set Target
> Set Target Reference Design task.

RunTaskGenerateRTLCodeAndIPCore — Enable task to generate code and IP core
true (default) | false

Enable or disable workflow task to generate code and IP core for embedded system,
specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Generate RTL Code and IP Core task.

RunTaskGenerateRTLCode — Enable task to generate RTL code and HDL top-level
wrapper
true (default) | false

Enable or disable workflow task to generate RTL code and an HDL top-level wrapper,
specified as a logical. When enabled, this task also generates a constraint file that
contains pin mapping information and clock constraints.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > HDL Code
Generation > Generate RTL Code task.

 hdlcoder.WorkflowConfig class

5-43

RunTaskCreateProject — Enable task to create embedded system tool project
true (default) | false

Enable or disable workflow task to create an embedded system tool project, specified as a
logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Embedded
System Integration > Create Project task.

RunTaskPerformLogicSynthesis — Enable task to launch synthesis tool and run
logic synthesis
true (default) | false

Enable or disable task to launch the synthesis tool and run logic synthesis, specified as a
logical. This task is available only when your synthesis tool is Xilinx ISE or Altera
Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Logic Synthesis task.

RunTaskPerformMapping — Enable task to map synthesized logic to target
device
true (default) | false

Enable or disable task to map the synthesized logic to the target device, specified as a
logical. This task is available only when your synthesis tool is Xilinx ISE or Altera
Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Mapping task.

RunTaskPerformPlaceAndRoute — Enable task to run place and route process
true (default) | false

Enable or disable task to run the place and route process, specified as a logical. This
task is available only when your synthesis tool is Xilinx ISE or Altera Quartus II.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > FPGA Synthesis
and Analysis > Perform Synthesis and P/R > Perform Place and Route task.

RunTaskGenerateProgrammingFile — Enable task to generate FPGA
programming file
true (default) | false

5 Class reference for HDL code generation from Simulink

5-44

Enable or disable task to generate an FPGA programming file, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Download to
Target > Generate Programming File task.

RunTaskGenerateSimulinkRealTimeInterface — Enable task to generate a
model that contains an interface subsystem that you can plug into a Simulink
Real-Time model
true (default) | false

Enable or disable task to generate a Simulink Real-Time model that contains an interface
subsystem, specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Download to
Target > Generate Simulink Real-Time Interface task.

Objective — Synthesis tool objective
hdlcoder.Objective.None (default) | hdlcoder.Objective.SpeedOptimized |
hdlcoder.Objective.AreaOptimized | hdlcoder.Objective.CompileOptimized

High-level synthesis tool objective, specified as one of these values.

hdlcoder.Objective.None (default) Do not generate additional Tcl commands.
hdlcoder.Objective.SpeedOptimized Generate synthesis tool Tcl commands to

optimize for speed.
hdlcoder.Objective.AreaOptimized Generate synthesis tool Tcl commands to

optimize for area.
hdlcoder.Objective.CompileOptimize
d

Generate synthesis tool Tcl commands to
optimize for compilation time.

If your synthesis tool is Xilinx ISE and your target workflow is Generic ASIC/FPGA or
FPGA Turnkey, set the Objective to hdlcoder.Objective.None.

For the tool-specific Tcl commands that are added to the synthesis project creation Tcl
script, see “Synthesis Objective to Tcl Command Mapping”.

AdditionalProjectCreationTclFiles — Additional project creation Tcl files to
include in your synthesis project
'' (default) | character vector

 hdlcoder.WorkflowConfig class

5-45

Additional project creation Tcl files that you want to include in your synthesis project,
specified as a character vector.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Create Project task.
Example: 'L:\file1.tcl;L:\file2.tcl;'

SkipPreRouteTimingAnalysis — Skip pre-route timing analysis logical
false (default) | true

Skip pre-route timing analysis, specified as a logical. If your tool does not support early
timing estimation, set to true.

When you enable this option, CriticalPathSource is set to 'post-route'

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Perform Synthesis and P/R > Perform Mapping task.

IgnorePlaceAndRouteErrors — Ignore place and route errors
false (default) | true

Ignore place and route errors, specified as a logical.

In the HDL Workflow Advisor, this option is part of the HDL Workflow Advisor > FPGA
Synthesis and Analysis > Perform Synthesis and P/R > Perform Place and route
task.

RunTaskBuildFPGABitstream — Enable task to generate bitstream for
embedded system
true (default) | false

Enable or disable workflow task to generate a bitstream for the embedded system,
specified as a logical.

In the HDL Workflow Advisor, this task is the HDL Workflow Advisor > Embedded
System Integration > Build FPGA Bitstream task.

5 Class reference for HDL code generation from Simulink

5-46

Methods
export Generate MATLAB script that recreates the workflow configuration
setAllTasks Enable all tasks in workflow
clearAllTasks Disable all tasks in workflow
validate Check property values in HDL Workflow CLI configuration object

Examples

Configure and Run Generic ASIC/FPGA Workflow with a Script

This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with
your Simulink design, then export the script.

This script is a generic ASIC/FPGA workflow script that targets a Xilinx Virtex® 7 device
and uses the Xilinx Vivado synthesis tool.

Open and view your exported HDL workflow script.

% Export Workflow Configuration Script
% Generated with MATLAB 9.5 (R2018b Prerelease) at 14:42:37 on 29/03/2018
% This script was generated using the following parameter values:
% Filename : 'S:\generic_workflow_example.m'
% Overwrite : true
% Comments : true
% Headers : true
% DUT : 'sfir_fixed/symmetric_fir'
% To view changes after modifying the workflow, run the following command:
% >> hWC.export('DUT','sfir_fixed/symmetric_fir');
%--

%% Load the Model
load_system('sfir_fixed');

%% Restore the Model to default HDL parameters
%hdlrestoreparams('sfir_fixed/symmetric_fir');

 hdlcoder.WorkflowConfig class

5-47

%% Model HDL Parameters
%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'GenerateCoSimModel', 'ModelSim');
hdlset_param('sfir_fixed', 'GenerateHDLTestBench', 'off');
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Virtex7');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7vx485t');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'ffg1761');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-2');
hdlset_param('sfir_fixed', 'TargetDirectory', 'hdl_prj\hdlsrc');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado','TargetWorkflow','Generic ASIC/FPGA');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndTestbench = true;
hWC.RunTaskVerifyWithHDLCosimulation = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskRunSynthesis = true;
hWC.RunTaskRunImplementation = false;
hWC.RunTaskAnnotateModelWithSynthesisResult = true;

% Set properties related to 'RunTaskGenerateRTLCodeAndTestbench' Task
hWC.GenerateRTLCode = true;
hWC.GenerateTestbench = false;
hWC.GenerateValidationModel = false;

% Set properties related to 'RunTaskCreateProject' Task
hWC.Objective = hdlcoder.Objective.None;
hWC.AdditionalProjectCreationTclFiles = '';

% Set properties related to 'RunTaskRunSynthesis' Task
hWC.SkipPreRouteTimingAnalysis = false;

% Set properties related to 'RunTaskRunImplementation' Task
hWC.IgnorePlaceAndRouteErrors = false;

% Set properties related to 'RunTaskAnnotateModelWithSynthesisResult' Task

5 Class reference for HDL code generation from Simulink

5-48

hWC.CriticalPathSource = 'pre-route';
hWC.CriticalPathNumber = 1;
hWC.ShowAllPaths = false;
hWC.ShowDelayData = true;
hWC.ShowUniquePaths = false;
hWC.ShowEndsOnly = false;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is generic_workflow_example.m, at the command
line, enter:

generic_workflow_example.m

Configure and Run FPGA-in-the-Loop with a Script

This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with
your Simulink design, then export the script.

This script is an FPGA-in-the-Loop workflow script that targets a Xilinx Virtex 5
development board and uses the Xilinx ISE synthesis tool.

Open and view your exported HDL workflow script.

%--
% HDL Workflow Script
% Generated with MATLAB 9.5 (R2018b Prerelease) at 15:11:23 on 04/05/2018
% This script was generated using the following parameter values:
% Filename : 'C:\Users\ggnanase\Desktop\R2018b\18b_models\ipcore_timing_failure\hdlworkflow_FIL.m'
% Overwrite : true

 hdlcoder.WorkflowConfig class

5-49

% Comments : true
% Headers : true
% DUT : 'sfir_fixed/symmetric_fir'
% To view changes after modifying the workflow, run the following command:
% >> hWC.export('DUT','sfir_fixed/symmetric_fir');
%--

%% Load the Model
load_system('sfir_fixed');

%% Restore the Model to default HDL parameters
%hdlrestoreparams('sfir_fixed/symmetric_fir');

%% Model HDL Parameters
%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Kintex7');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7k325t');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'ffg900');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-2');
hdlset_param('sfir_fixed', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('sfir_fixed', 'TargetFrequency', 25);
hdlset_param('sfir_fixed', 'TargetPlatform', 'Xilinx Kintex-7 KC705 development board');
hdlset_param('sfir_fixed', 'Workflow', 'FPGA-in-the-Loop');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado','TargetWorkflow','FPGA-in-the-Loop');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndTestbench = true;
hWC.RunTaskVerifyWithHDLCosimulation = false;
hWC.RunTaskBuildFPGAInTheLoop = true;

% Set properties related to 'RunTaskGenerateRTLCodeAndTestbench' Task
hWC.GenerateRTLCode = true;
hWC.GenerateTestbench = false;
hWC.GenerateValidationModel = false;

5 Class reference for HDL code generation from Simulink

5-50

% Set properties related to 'RunTaskBuildFPGAInTheLoop' Task
hWC.IPAddress = '192.168.0.2';
hWC.MACAddress = '00-0A-35-02-21-8A';
hWC.SourceFiles = '';
hWC.Connection = 'Ethernet';
hWC.RunExternalBuild = true;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);
hdlcoder.runWorkflow('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is FIL_workflow_example.m, at the command line,
enter:

fil_workflow_example.m

Configure and Run FPGA Turnkey Workflow with a Script

This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with
your Simulink design, then export the script.

This script is an FPGA Turnkey workflow script that targets a Xilinx Virtex 5 development
board and uses the Xilinx ISE synthesis tool.

Open and view your exported HDL workflow script.

% Export Workflow Configuration Script
% Generated with MATLAB 8.6 (R2015b) at 14:24:32 on 08/07/2015
% Parameter Values:
% Filename : 'S:\turnkey_workflow_example.m'
% Overwrite : true

 hdlcoder.WorkflowConfig class

5-51

% Comments : true
% Headers : true
% DUT : 'hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA'

%% Load the Model
load_system('hdlcoderUARTServoControllerExample');

%% Model HDL Parameters
% Set Model HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'HDLSubsystem', 'hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA');
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'SynthesisTool', 'Xilinx ISE');
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'SynthesisToolChipFamily', 'Virtex5');
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'SynthesisToolDeviceName', 'xc5vsx50t');
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'SynthesisToolPackageName', 'ff1136');
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'SynthesisToolSpeedValue', '-1');
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('hdlcoderUARTServoControllerExample', ...
 'TargetPlatform', 'Xilinx Virtex-5 ML506 development board');
hdlset_param('hdlcoderUARTServoControllerExample', 'Workflow', 'FPGA Turnkey');

% Set Inport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_rxd', ...
 'IOInterface', 'RS-232 Serial Port Rx');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_rxd', ...
 'IOInterfaceMapping', '[0]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_txd', ...
 'IOInterface', 'RS-232 Serial Port Tx');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_txd', ...
 'IOInterfaceMapping', '[0]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/version', ...
 'IOInterface', 'LEDs General Purpose [0:7]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/version', ...
 'IOInterfaceMapping', '[0:3]');

5 Class reference for HDL code generation from Simulink

5-52

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/pwm_output', ...
 'IOInterface', 'Expansion Headers J6 Pin 2-64 [0:31]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/pwm_output', ...
 'IOInterfaceMapping', '[0]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug1', ...
 'IOInterface', 'Expansion Headers J6 Pin 2-64 [0:31]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug1', ...
 'IOInterfaceMapping', '[1]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug2', ...
 'IOInterface', 'Expansion Headers J6 Pin 2-64 [0:31]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug2', ...
 'IOInterfaceMapping', '[2]');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx ISE', ...
 'TargetWorkflow','FPGA Turnkey');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndTestbench = true;
hWC.RunTaskVerifyWithHDLCosimulation = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskPerformLogicSynthesis = true;
hWC.RunTaskPerformMapping = true;
hWC.RunTaskPerformPlaceAndRoute = true;
hWC.RunTaskGenerateProgrammingFile = true;
hWC.RunTaskProgramTargetDevice = false;

% Set Properties related to Create Project Task
hWC.Objective = hdlcoder.Objective.None;
hWC.AdditionalProjectCreationTclFiles = '';

% Set Properties related to Perform Mapping Task
hWC.SkipPreRouteTimingAnalysis = true;

 hdlcoder.WorkflowConfig class

5-53

% Set Properties related to Perform Place and Route Task
hWC.IgnorePlaceAndRouteErrors = false;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is turnkey_workflow_example.m, at the command
line, enter:

turnkey_workflow_example.m

Configure and Run IP Core Generation Workflow with a Script

This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with
your Simulink design, then export the script.

This script is an IP core generation workflow script that targets the Altera Cyclone V SoC
development kit and uses the Altera Quartus II synthesis tool.

Open and view your exported HDL workflow script.

% Export Workflow Configuration Script
% Generated with MATLAB 8.6 (R2015b) at 14:42:16 on 08/07/2015
% Parameter Values:
% Filename : 'S:\ip_core_gen_workflow_example.m'
% Overwrite : true
% Comments : true
% Headers : true
% DUT : 'hdlcoder_led_blinking/led_counter'

5 Class reference for HDL code generation from Simulink

5-54

%% Load the Model
load_system('hdlcoder_led_blinking');

%% Model HDL Parameters
% Set Model HDL parameters
hdlset_param('hdlcoder_led_blinking', ...
 'HDLSubsystem', 'hdlcoder_led_blinking/led_counter');
hdlset_param('hdlcoder_led_blinking', 'OptimizationReport', 'on');
hdlset_param('hdlcoder_led_blinking', ...
 'ReferenceDesign', 'Default system (Qsys 14.0)');
hdlset_param('hdlcoder_led_blinking', 'ResetType', 'Synchronous');
hdlset_param('hdlcoder_led_blinking', 'ResourceReport', 'on');
hdlset_param('hdlcoder_led_blinking', 'SynthesisTool', 'Altera QUARTUS II');
hdlset_param('hdlcoder_led_blinking', 'SynthesisToolChipFamily', 'Cyclone V');
hdlset_param('hdlcoder_led_blinking', 'SynthesisToolDeviceName', '5CSXFC6D6F31C6');
hdlset_param('hdlcoder_led_blinking', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('hdlcoder_led_blinking', ...
 'TargetPlatform', 'Altera Cyclone V SoC development kit - Rev.D');
hdlset_param('hdlcoder_led_blinking', 'Traceability', 'on');
hdlset_param('hdlcoder_led_blinking', 'Workflow', 'IP Core Generation');

% Set SubSystem HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter', ...
 'ProcessorFPGASynchronization', 'Free running');

% Set Inport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_frequency', ...
 'IOInterface', 'AXI4');
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_frequency', ...
 'IOInterfaceMapping', 'x"100"');

% Set Inport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_direction', ...
 'IOInterface', 'AXI4');
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_direction', ...
 'IOInterfaceMapping', 'x"104"');

% Set Outport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface', 'External Port');

% Set Outport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/Read_back', 'IOInterface', 'AXI4');
hdlset_param('hdlcoder_led_blinking/led_counter/Read_back', ...
 'IOInterfaceMapping', 'x"108"');

 hdlcoder.WorkflowConfig class

5-55

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Altera QUARTUS II', ...
 'TargetWorkflow','IP Core Generation');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndIPCore = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskGenerateSoftwareInterfaceModel = false;
hWC.RunTaskBuildFPGABitstream = true;
hWC.RunTaskProgramTargetDevice = false;

% Set Properties related to Generate RTL Code And IP Core Task
hWC.IPCoreRepository = '';
hWC.GenerateIPCoreReport = true;

% Set Properties related to Create Project Task
hWC.Objective = hdlcoder.Objective.AreaOptimized;

% Set Properties related to Generate Software Interface Model Task
hWC.OperatingSystem = '';
hWC.AddLinuxDeviceDriver = false;

% Set Properties related to Build FPGA Bitstream Task
hWC.RunExternalBuild = true;
hWC.TclFileForSynthesisBuild = hdlcoder.BuildOption.Default;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('hdlcoder_led_blinking/led_counter', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

5 Class reference for HDL code generation from Simulink

5-56

For example, if the script file name is ip_core_workflow_example.m, at the command
line, enter:

ip_core_gen_workflow_example.m

Configure and Run Simulink Real-Time FPGA I/O Workflow for ISE-Based Boards
with a Script

This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with
your Simulink design, then export the script.

This script is a Simulink Real-Time FPGA I/O workflow script that targets the
Speedgoat IO331 board that uses the Xilinx ISE synthesis tool.

Open and view your exported HDL workflow script.

%--
% HDL Workflow Script
% Generated with MATLAB 9.5 (R2018b Prerelease) at 18:14:14 on 08/05/2018
% This script was generated using the following parameter values:
% Filename : 'C:\Users\ggnanase\Desktop\R2018b\18b_models\ipcore_timing_failure\hdlworkflow_IO331.m'
% Overwrite : true
% Comments : true
% Headers : true
% DUT : 'sfir_fixed/symmetric_fir'
% To view changes after modifying the workflow, run the following command:
% >> hWC.export('DUT','sfir_fixed/symmetric_fir');
%--

%% Load the Model
load_system('sfir_fixed');

%% Restore the Model to default HDL parameters
%hdlrestoreparams('sfir_fixed/symmetric_fir');

%% Model HDL Parameters
%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Spartan6');

 hdlcoder.WorkflowConfig class

5-57

hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc6slx150');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fgg676');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');
hdlset_param('sfir_fixed', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('sfir_fixed', 'TargetFrequency', 75);
hdlset_param('sfir_fixed', 'TargetPlatform', 'Speedgoat IO331');
hdlset_param('sfir_fixed', 'Workflow', 'Simulink Real-Time FPGA I/O');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx ISE','TargetWorkflow','Simulink Real-Time FPGA I/O');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';
hWC.ReferenceDesignToolVersion = '';
hWC.IgnoreToolVersionMismatch = false;

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCode = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskPerformLogicSynthesis = true;
hWC.RunTaskPerformMapping = true;
hWC.RunTaskPerformPlaceAndRoute = true;
hWC.RunTaskGenerateProgrammingFile = true;
hWC.RunTaskGenerateSimulinkRealTimeInterface = true;

% Set properties related to 'RunTaskCreateProject' Task
hWC.Objective = hdlcoder.Objective.None;
hWC.AdditionalProjectCreationTclFiles = '';

% Set properties related to 'RunTaskPerformMapping' Task
hWC.SkipPreRouteTimingAnalysis = true;

% Set properties related to 'RunTaskPerformPlaceAndRoute' Task
hWC.IgnorePlaceAndRouteErrors = false;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);

Optionally, edit the script.

5 Class reference for HDL code generation from Simulink

5-58

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is slrt_workflow_example.m, at the command line,
enter:

slrt_workflow_example.m

Configure and Run Simulink Real-Time FPGA I/O Workflow for Vivado-Based
Boards with a Script

This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with
your Simulink design, then export the script.

This script is a Simulink Real-Time FPGA I/O workflow script that targets the
Speedgoat IO333-325K board that uses the Xilinx Vivado synthesis tool.

Open and view your exported HDL workflow script.

%--
% HDL Workflow Script
% Generated with MATLAB 9.5 (R2018b Prerelease) at 18:14:33 on 08/05/2018
% This script was generated using the following parameter values:
% Filename : 'C:\Users\ggnanase\Desktop\R2018b\18b_models\ipcore_timing_failure\hdlworkflow_IO333.m'
% Overwrite : true
% Comments : true
% Headers : true
% DUT : 'sfir_fixed/symmetric_fir'
% To view changes after modifying the workflow, run the following command:
% >> hWC.export('DUT','sfir_fixed/symmetric_fir');
%--

%% Load the Model
load_system('sfir_fixed');

%% Restore the Model to default HDL parameters
%hdlrestoreparams('sfir_fixed/symmetric_fir');

%% Model HDL Parameters

 hdlcoder.WorkflowConfig class

5-59

%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Kintex7');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7k325t');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'ffg900');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-2');
hdlset_param('sfir_fixed', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('sfir_fixed', 'TargetFrequency', 100);
hdlset_param('sfir_fixed', 'TargetPlatform', 'Speedgoat IO333-325K');
hdlset_param('sfir_fixed', 'Workflow', 'Simulink Real-Time FPGA I/O');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado','TargetWorkflow','Simulink Real-Time FPGA I/O');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';
hWC.ReferenceDesignToolVersion = '2017.4';
hWC.IgnoreToolVersionMismatch = false;

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndIPCore = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskBuildFPGABitstream = true;
hWC.RunTaskGenerateSimulinkRealTimeInterface = true;

% Set properties related to 'RunTaskGenerateRTLCodeAndIPCore' Task
hWC.IPCoreRepository = '';
hWC.GenerateIPCoreReport = true;
hWC.GenerateIPCoreTestbench = false;
hWC.CustomIPTopHDLFile = '';
hWC.AXI4RegisterReadback = false;
hWC.IPDataCaptureBufferSize = '128';

% Set properties related to 'RunTaskCreateProject' Task
hWC.Objective = hdlcoder.Objective.None;
hWC.AdditionalProjectCreationTclFiles = '';
hWC.EnableIPCaching = true;

% Set properties related to 'RunTaskBuildFPGABitstream' Task
hWC.RunExternalBuild = false;
hWC.TclFileForSynthesisBuild = hdlcoder.BuildOption.Default;

5 Class reference for HDL code generation from Simulink

5-60

hWC.CustomBuildTclFile = '';
hWC.ReportTimingFailure = hdlcoder.ReportTiming.Error;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is slrt_workflow_example.m, at the command line,
enter:

slrt_workflow_example.m

See Also
Functions
hdlcoder.runWorkflow

Topics
“Run HDL Workflow with a Script”

Introduced in R2015b

 hdlcoder.WorkflowConfig class

5-61

export
Class: hdlcoder.WorkflowConfig
Package: hdlcoder

Generate MATLAB script that recreates the workflow configuration

Syntax
export(Name,Value)

Description
export(Name,Value) generates MATLAB commands that can recreate the current
workflow configuration, with additional options specified by one or more Name,Value
pair arguments.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Filename — Full path to exported script file
'' (default) | character vector

Full path to the exported MATLAB script file, specified as a character vector. If the path is
empty, the MATLAB commands are displayed in the Command Window, but not saved in a
file.
Example: 'L:\sandbox\work\hdlworkflow.m'

Overwrite — Overwrite existing file
false (default) | true

5 Class reference for HDL code generation from Simulink

5-62

Specify whether to overwrite the existing file as a logical.

Comments — Include comments
true (default) | false

Specify whether to include comments in the command list or script as a logical.

Headers — Include headers
true (default) | false

Specify whether to include a header in the command list or script as a logical.

DUT — Full path to DUT
'' (default) | character vector

Full path to the DUT, specified as a character vector.
Example: 'hdlcoder_led_blinking/led_counter'

See Also
Classes
hdlcoder.WorkflowConfig

Topics
“Run HDL Workflow with a Script”

Introduced in R2015b

 export

5-63

setAllTasks
Class: hdlcoder.WorkflowConfig
Package: hdlcoder

Enable all tasks in workflow

Syntax
setAllTasks

Description
setAllTasks enables all workflow tasks in the hdlcoder.WorkflowConfig object.

If you do not want to enable each task individually, use this method. For example, if you
want to run all tasks but one, you can run hdlcoder.WorkflowConfig.setAllTasks,
then disable the task that you want to skip.

See Also
Functions
hdlcoder.WorkflowConfig.clearAllTasks

Classes
hdlcoder.WorkflowConfig

Topics
“Run HDL Workflow with a Script”

Introduced in R2015b

5 Class reference for HDL code generation from Simulink

5-64

clearAllTasks
Class: hdlcoder.WorkflowConfig
Package: hdlcoder

Disable all tasks in workflow

Syntax
clearAllTasks

Description
clearAllTasks disables all workflow tasks in the hdlcoder.WorkflowConfig object.

If you do not want to disable each task individually, use this method. For example, if you
want to run a single task, you can run hdlcoder.WorkflowConfig.clearAllTasks,
then enable the task that you want to run.

See Also
Functions
hdlcoder.WorkflowConfig.setAllTasks

Classes
hdlcoder.WorkflowConfig

Topics
“Run HDL Workflow with a Script”

Introduced in R2015b

 clearAllTasks

5-65

validate
Class: hdlcoder.WorkflowConfig
Package: hdlcoder

Check property values in HDL Workflow CLI configuration object

Syntax
validate

Description
validate verifies that the hdlcoder.WorkflowConfig object has acceptable values
for all required properties, and that property values have valid data types. If validation
fails, you get an error message.

See Also
hdlcoder.WorkflowConfig

Topics
“Run HDL Workflow with a Script”

Introduced in R2015b

5 Class reference for HDL code generation from Simulink

5-66

hdlcoder.runWorkflow
Run HDL code generation and deployment workflow

Syntax
hdlcoder.runWorkflow(DUT)
hdlcoder.runWorkflow(DUT,workflow_config)

Description
hdlcoder.runWorkflow(DUT) runs the HDL code generation and deployment workflow
with default workflow configuration settings.

hdlcoder.runWorkflow(DUT,workflow_config) runs the HDL code generation and
deployment workflow according to the specified workflow configuration,
workflow_config.

A best practice is to use the HDL Workflow Advisor to configure the workflow, then export
a workflow script. The commands in the workflow script create and configure a workflow
configuration object that matches the settings in the HDL Workflow Advisor. The script
includes the hdlcoder.runWorkflow command. To learn more, see “Run HDL Workflow
with a Script”.

Examples

Run Workflow with Configuration Object

This example is a generic ASIC/FPGA workflow script that targets a Xilinx Virtex-7 device.
It uses the Xilinx Vivado synthesis tool. The example generates HDL code for the
sfir_fixed model, and performs FPGA synthesis and analysis.

 hdlcoder.runWorkflow

5-67

Before running the Workflow

Before running the workflow, you must have the synthesis tool installed. Use
hdlsetuptoolpath to specify the path to your synthesis tool.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
'L:\Xilinx\Vivado\2016.2\bin\vivado.bat');

Prepending following Xilinx Vivado path(s) to the system path:
L:\Xilinx\Vivado\2016.2\bin

Specify the model for running the workflow

To run the HDL workflow with default settings for a DUT subsystem, modelname/DUT, at
the command line, enter:

open_system('sfir_fixed');

5 Class reference for HDL code generation from Simulink

5-68

Model HDL Parameters

Set Model HDL parameters

hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Virtex7');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7vx485t');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'ffg1761');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-2');

Workflow Configuration Settings

• Construct the Workflow Configuration Object with default settings
• Specify the path to your project folder. This step is optional

hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado', ...
 'TargetWorkflow','Generic ASIC/FPGA');

hWC.ProjectFolder = 'C:/Temp/hdl_prj';

Run the workflow

hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);

Workflow begin.
Loading settings from model.
++++++++++++++ Task Generate RTL Code and Testbench ++++++++++++++
Generating HDL for 'sfir_fixed/symmetric_fir'.
Starting HDL check.
Begin VHDL Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as C:\Temp\hdl_prj\hdlsrc\sfir_fixed\symmetric_fir.vhd.
Creating HDL Code Generation Check Report file://C:\Temp\hdl_prj\hdlsrc\sfir_fixed\symmetric_fir_report.html
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.
++++++++++++++ Task Create Project ++++++++++++++
Generating Xilinx Vivado 2016.2 project: C:\Temp\hdl_prj\vivado_prj\symmetric_fir_vivado.xpr
Generated logfile: C:\Temp\hdl_prj\hdlsrc\sfir_fixed\workflow_task_CreateProject.log
Task "Create Project" successful.
++++++++++++++ Task Run Synthesis ++++++++++++++
Generated logfile: C:\Temp\hdl_prj\hdlsrc\sfir_fixed\workflow_task_RunSynthesis.log
Task "Run Synthesis" successful.
++++++++++++++ Task Annotate Model with Synthesis Result ++++++++++++++
Parsing the timing file...
Matched Source = 'sfir_fixed/symmetric_fir/ud1_out1'
Matched Destination = 'sfir_fixed/symmetric_fir/y_out'

 hdlcoder.runWorkflow

5-69

Highlighting CP 1 from 'sfir_fixed/symmetric_fir/ud1_out1' to 'sfir_fixed/symmetric_fir/y_out' ...
Click here to reset highlighting.
Workflow complete.

Input Arguments
DUT — Full path to DUT
'' (default) | character vector

5 Class reference for HDL code generation from Simulink

5-70

Full path to the DUT, specified as a character vector.
Example: 'hdlcoder_led_blinking/led_counter'

workflow_config — Workflow configuration
hdlcoder.WorkflowConfig

HDL code generation and deployment workflow configuration, specified as an
hdlcoder.WorkflowConfig object.

See Also
Functions
hdlcoder.WorkflowConfig.clearAllTasks |
hdlcoder.WorkflowConfig.setAllTasks

Classes
hdlcoder.WorkflowConfig

Topics
“Run HDL Workflow with a Script”

Introduced in R2015b

 hdlcoder.runWorkflow

5-71

hdlcoder.OptimizationConfig class
Package: hdlcoder

hdlcoder.optimizeDesign configuration object

Description
Use the hdlcoder.OptimizationConfig object to set options for the
hdlcoder.optimizeDesign function.

Maximum Clock Frequency Configuration
To configure hdlcoder.optimizeDesign to maximize the clock frequency of your
design:

• Set ExplorationMode to
hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency.

• Set ResumptionPoint to the default, ''.

You can optionally set IterationLimit and TestbenchGeneration to nondefault
values. HDL Coder ignores the TargetFrequency setting.

Target Clock Frequency Configuration
To configure hdlcoder.optimizeDesign to meet a target clock frequency:

• Set ExplorationMode to
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency.

• Set TargetFrequency to your target clock frequency.
• Set ResumptionPoint to the default, ''

You can optionally set IterationLimit and TestbenchGeneration to nondefault
values.

5 Class reference for HDL code generation from Simulink

5-72

Resume From Interruption Configuration
To configure hdlcoder.optimizeDesign to resume after an interruption, specify
ResumptionPoint.

When you set ResumptionPoint to a nondefault value, the other properties are ignored.

Construction
optimcfg = hdlcoder.OptimizationConfig creates an
hdlcoder.OptimizationConfig object for automatic iterative HDL design
optimization.

Properties
ExplorationMode — Optimization target mode
hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency (default) |
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency

Optimization target mode, specified as one of these values:

hdlcoder.OptimizationConfig.Explo
rationMode.BestFrequency

Optimizes the design to try to achieve the
maximum clock frequency
hdlcoder.OptimizationConfig.Explo
rationMode.BestFrequency is the
default.

hdlcoder.OptimizationConfig.Explo
rationMode.TargetFrequency

Optimizes the design to try to achieve the
specified target clock frequency

IterationLimit — Maximum number of iterations
1 (default) | positive integer

Maximum number of optimization iterations before exiting, specified as a positive integer.

If ExplorationMode is
hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency, HDL Coder
runs this number of iterations.

 hdlcoder.OptimizationConfig class

5-73

If ExplorationMode is
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency, HDL Coder
runs the number of iterations needed to meet the target frequency. Otherwise, the coder
runs the maximum number of iterations.

ResumptionPoint — Folder containing optimization data from earlier iteration
'' (default) | character vector

Name of folder that contains previously-generated optimization iteration data, specified
as a character vector. The folder is a subfolder of hdlexpl, and the folder name begins
with the character vector, Iter.

When you set ResumptionPoint to a nondefault value, hdlcoder.optimizeDesign
ignores the other configuration object properties.
Example: 'Iter1-26-Sep-2013-10-19-13'

TargetFrequency — Target clock frequency
Inf (default) | double

Target clock frequency, specified as a double in MHz. Specify when ExplorationMode is
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency.

Examples

Configure hdlcoder.optimizeDesign for maximum clock frequency

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';
dutSubsys = 'symmetric_fir';
open_system(model);
hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param(model,'SynthesisTool','Xilinx ISE', ...
 'SynthesisToolChipFamily','Zynq', ...
 'SynthesisToolDeviceName','xc7z030', ...
 'SynthesisToolPackageName','fbg484', ...
 'SynthesisToolSpeedValue','-3')

5 Class reference for HDL code generation from Simulink

5-74

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Save your model.

You must save your model if you want to regenerate code later without rerunning the
iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Set the iteration limit to 10.

oc.IterationLimit = 10;

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Iteration 0
Generate and synthesize HDL code ...
(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66 Iteration 1
Generate and synthesize HDL code ...
(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72 Iteration 2
Generate and synthesize HDL code ...
(CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22 Iteration 3
Generate and synthesize HDL code ...
(CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37 Iteration 4
Generate and synthesize HDL code ...
(CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04 Iteration 5
Generate and synthesize HDL code ...
Exiting because critical path cannot be further improved.
Summary report: summary.html
Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s

 hdlcoder.OptimizationConfig class

5-75

Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66
Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72
Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22
Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37
Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04
Final results are saved in
 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-04-41
Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after five iterations because the fourth and fifth iterations had the
same critical path, which indicates that the coder has found the minimum critical path.
The design’s maximum clock frequency after optimization is 1 / 9.55 ns, or 104.71 MHz.

Configure hdlcoder.optimizeDesign for target clock frequency

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';
dutSubsys = 'symmetric_fir';
open_system(model);
hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param(model,'SynthesisTool','Xilinx ISE', ...
 'SynthesisToolChipFamily','Zynq', ...
 'SynthesisToolDeviceName','xc7z030', ...
 'SynthesisToolPackageName','fbg484', ...
 'SynthesisToolSpeedValue','-3')

Disable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','off');

Save your model.

You must save your model if you want to regenerate code later without rerunning the
iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

Create an optimization configuration object, oc.

5 Class reference for HDL code generation from Simulink

5-76

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to stop after it reaches a clock frequency
of 50MHz, or 10 iterations, whichever comes first.

oc.ExplorationMode = ...
 hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency;
oc.TargetFrequency = 50;
oc.IterationLimit = 10; =

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed','GenerateHDLTestBench','off');
hdlset_param('sfir_fixed','HDLSubsystem','sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed','SynthesisTool','Xilinx ISE');
hdlset_param('sfir_fixed','SynthesisToolChipFamily','Zynq');
hdlset_param('sfir_fixed','SynthesisToolDeviceName','xc7z030');
hdlset_param('sfir_fixed','SynthesisToolPackageName','fbg484');
hdlset_param('sfir_fixed','SynthesisToolSpeedValue','-3');

Iteration 0
Generate and synthesize HDL code ...
(CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02 Iteration 1
Generate and synthesize HDL code ...
Exiting because constraint (20.00 ns) has been met (16.26 ns).
Summary report: summary.html
Achieved Critical Path (CP) Latency : 16.26 ns Elapsed : 134.02 s
Iteration 0: (CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02
Final results are saved in
 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-14
Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after one iteration because it has achieved the target clock
frequency. The critical path is 16.26 ns, a clock frequency of 61.50 GHz.

Configure hdlcoder.optimizeDesign to resume from interruption

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';
dutSubsys = 'symmetric_fir';

 hdlcoder.OptimizationConfig class

5-77

open_system(model);
hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options to the same values as in the interrupted
run.

hdlset_param(model,'SynthesisTool','Xilinx ISE', ...
 'SynthesisToolChipFamily','Zynq', ...
 'SynthesisToolDeviceName','xc7z030', ...
 'SynthesisToolPackageName','fbg484', ...
 'SynthesisToolSpeedValue','-3')

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to run using data from the first iteration of
a previous run.

oc.ResumptionPoint = 'Iter5-07-Jan-2014-17-04-29';

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed','HDLSubsystem','sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed','SynthesisTool','Xilinx ISE');
hdlset_param('sfir_fixed','SynthesisToolChipFamily','Zynq');
hdlset_param('sfir_fixed','SynthesisToolDeviceName','xc7z030');
hdlset_param('sfir_fixed','SynthesisToolPackageName','fbg484');
hdlset_param('sfir_fixed','SynthesisToolSpeedValue','-3');

Try to resume from resumption point: Iter5-07-Jan-2014-17-04-29
Iteration 5
Generate and synthesize HDL code ...
Exiting because critical path cannot be further improved.
Summary report: summary.html
Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s
Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66
Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72
Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22

5 Class reference for HDL code generation from Simulink

5-78

Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37
Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04
Final results are saved in
 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-30
Validation model: gm_sfir_fixed_vnl

Then coder stops after one additional iteration because it has achieved the target clock
frequency. The critical path is 9.55 ns, or a clock frequency of 104.71 MHz.

See Also
hdlcoder.optimizeDesign

 hdlcoder.OptimizationConfig class

5-79

Function Reference for HDL Code
Generation from MATLAB

6

codegen
Generate HDL code from MATLAB code

Syntax
codegen -config hdlcfg matlab_design_name
codegen -config hdlcfg -float2fixed fixptcfg matlab_design_name

Description
codegen -config hdlcfg matlab_design_name generates HDL code from MATLAB
code.

codegen -config hdlcfg -float2fixed fixptcfg matlab_design_name
converts floating-point MATLAB code to fixed-point code, then generates HDL code.

Examples

Generate Verilog Code from MATLAB Code

Create a coder.HdlConfig object, hdlcfg.

hdlcfg = coder.config('hdl'); % Create a default 'hdl' config

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Set the target language to Verilog.

hdlcfg.TargetLanguage = 'Verilog';

Generate HDL code from your MATLAB design. In this example, the MATLAB design
function name is mlhdlc_dti.

6 Function Reference for HDL Code Generation from MATLAB

6-2

codegen -config hdlcfg mlhdlc_dti

Generate HDL Code from Floating-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Create a coder.HdlConfig object, hdlcfg, with default settings.

hdlcfg = coder.config('hdl');

Convert your floating-point MATLAB design to fixed-point, and generate HDL code. In this
example, the MATLAB design function name is mlhdlc_dti.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

Input Arguments
hdlcfg — HDL code generation configuration
coder.HdlConfig

HDL code generation configuration options, specified as a coder.HdlConfig object.

Create a coder.HdlConfig object using the HDL coder.config function.

matlab_design_name — MATLAB design function name
character vector

Name of top-level MATLAB function for which you want to generate HDL code.

fixptcfg — Floating-point to fixed-point conversion configuration
coder.FixptConfig

Floating-point to fixed-point conversion configuration options, specified as a
coder.FixptConfig object.

 codegen

6-3

Use fixptcfg when generating HDL code from floating-point MATLAB code. Create a
coder.FixptConfig object using the HDL coder.config function.

See Also
coder.FixptConfig | coder.HdlConfig | coder.config

Topics
“Generate HDL Code from MATLAB Code Using the Command Line Interface”

Introduced in R2013a

6 Function Reference for HDL Code Generation from MATLAB

6-4

coder.approximation
Create function replacement configuration object

Syntax
q = coder.approximation(function_name)
q = coder.approximation('Function',function_name,Name,Value)

Description
q = coder.approximation(function_name) creates a function replacement
configuration object for use during code generation or fixed-point conversion. The
configuration object specifies how to create a lookup table approximation for the MATLAB
function specified by function_name. To associate this approximation with a
coder.FixptConfig object for use with thecodegen function, use the
coder.FixptConfig configuration object addApproximation method.

Use this syntax only for the functions that coder.approximation can replace
automatically. These functions are listed in the function_name argument description.

q = coder.approximation('Function',function_name,Name,Value) creates a
function replacement configuration object using additional options specified by one or
more name-value pair arguments.

Examples

Replace log Function with Default Lookup Table

Create a function replacement configuration object using the default settings. The
resulting lookup table in the generated code uses 1000 points.

logAppx = coder.approximation('log');

 coder.approximation

6-5

Replace log Function with Uniform Lookup Table

Create a function replacement configuration object. Specify the input range and prefix to
add to the replacement function name. The resulting lookup table in the generated code
uses 1000 points.

logAppx = coder.approximation('Function','log','InputRange',[0.1,1000],...
'FunctionNamePrefix','log_replace_');

Replace log Function with Optimized Lookup Table

Create a function replacement configuration object using the 'OptimizeLUTSize'
option to specify to replace the log function with an optimized lookup table. The resulting
lookup table in the generated code uses less than the default number of points.

 logAppx = coder.approximation('Function','log','OptimizeLUTSize', true,...
'InputRange',[0.1,1000],'InterpolationDegree',1,'ErrorThreshold',1e-3,...
'FunctionNamePrefix','log_optim_','OptimizeIterations',25);

Replace Custom Function with Optimized Lookup Table

Create a function replacement configuration object that specifies to replace the custom
function, saturateExp, with an optimized lookup table.

Create a custom function, saturateExp.

saturateExp = @(x) 1/(1+exp(-x));

Create a function replacement configuration object that specifies to replace the
saturateExp function with an optimized lookup table. Because the saturateExp
function is not listed as a function for which coder.approximation can generate an
approximation automatically, you must specify the CandidateFunction property.

saturateExp = @(x) 1/(1+exp(-x));
custAppx = coder.approximation('Function','saturateExp',...

6 Function Reference for HDL Code Generation from MATLAB

6-6

'CandidateFunction', saturateExp,...
'NumberOfPoints',50,'InputRange',[0,10]);

Input Arguments
function_name — Name of the function to replace
'acos' | 'acosd' | 'acosh' | 'acoth' | 'asin' | 'asind' | 'asinh' | 'atan' |
'atand' | 'atanh' | 'cos' | 'cosd' | 'cosh' | 'erf ' | 'erfc' | 'exp' | 'log' |
'normcdf' | 'reallog' | 'realsqrt' | 'reciprocal' | 'rsqrt' | 'sin' | 'sinc' |
'sind' | 'sinh' | 'sqrt' | 'tan' | 'tand'

Name of function to replace, specified as a string. The function must be one of the listed
functions.
Example: 'sqrt'
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Function', 'log'

Architecture — Architecture of lookup table approximation
'LookupTable' (default) | 'Flat'

Architecture of the lookup table approximation, specified as the comma-separated pair
consisting of 'Architecture' and a string. Use this argument when you want to specify
the architecture for the lookup table. The Flat architecture does not use interpolation.
Data Types: char

CandidateFunction — Function handle of the replacement function
function handle | string

Function handle of the replacement function, specified as the comma-separated pair
consisting of 'CandidateFunction' and a function handle or string referring to a
function handle. Use this argument when the function that you want to replace is not

 coder.approximation

6-7

listed under function_name. Specify the function handle or string referring to a
function handle of the function that you want to replace. You can define the function in a
file or as an anonymous function.

If you do not specify a candidate function, then the function you chose to replace using
the Function property is set as the CandidateFunction.
Example: 'CandidateFunction', @(x) (1./(1+x))
Data Types: function_handle | char

ErrorThreshold — Error threshold value used to calculate optimal lookup table
size
0.001 (default) | nonnegative scalar

Error threshold value used to calculate optimal lookup table size, specified as the comma-
separated pair consisting of 'ErrorThreshold' and a nonnegative scalar. If
'OptimizeLUTSize' is true, this argument is required.

Function — Name of function to replace with a lookup table approximation
function_name

Name of function to replace with a lookup table approximation, specified as the comma-
separated pair consisting of 'Function' and a string. The function must be continuous
and stateless. If you specify one of the functions that is listed under function_name, the
conversion process automatically provides a replacement function. Otherwise, you must
also specify the 'CandidateFunction' argument for the function that you want to
replace.
Example: 'Function','log'
Example: 'Function', 'my_log','CandidateFunction',@my_log
Data Types: char

FunctionNamePrefix — Prefix for generated fixed-point function names
'replacement_' (default) | string

Prefix for generated fixed-point function names, specified as the comma-separated pair
consisting of 'FunctionNamePrefix' and a string. The name of a generated function
consists of this prefix, followed by the original MATLAB function name.
Example: ‘log_replace_’

6 Function Reference for HDL Code Generation from MATLAB

6-8

InputRange — Range over which to replace the function
[] (default) | 2x1 row vector | 2xN matrix

Range over which to replace the function, specified as the comma-separated pair
consisting of 'InputRange' and a 2-by-1 row vector or a 2-by-N matrix.
Example: [-1 1]

InterpolationDegree — Interpolation degree
1 (default) | 0 | 2 | 3

Interpolation degree, specified as the comma-separated pair consisting of
'InterpolationDegree' and1 (linear), 0 (none), 2 (quadratic), or 3 (cubic).

NumberOfPoints — Number of points in lookup table
1000 (default) | positive integer

Number of points in lookup table, specified as the comma-separated pair consisting of
'NumberOfPoints' and a positive integer.

OptimizeIterations — Number of iterations
25 (default) | positive integer

Number of iterations to run when optimizing the size of the lookup table, specified as the
comma-separated pair consisting of 'OptimizeIterations' and a positive integer.

OptimizeLUTSize — Optimize lookup table size
false (default) | true

Optimize lookup table size, specified as the comma-separated pair consisting of
'OptimizeLUTSize' and a logical value. Setting this property to true generates an
area-optimal lookup table, that is, the lookup table with the minimum possible number of
points. This lookup table is optimized for size, but might not be speed efficient.

PipelinedArchitecture — Option to enable pipelining
false (default) | true

Option to enable pipelining, specified as the comma-separated pair consisting of
'PipelinedArchitecture' and a logical value.

 coder.approximation

6-9

Output Arguments
q — Function replacement configuration object, returned as a
coder.mathfcngenerator.LookupTable or a coder.mathfcngenerator.Flat
configuration object
coder.mathfcngenerator.LookupTable configuration object |
coder.mathfcngenerator.Flat configuration object

Function replacement configuration object. Use the coder.FixptConfig configuration
object addApproximation method to associate this configuration object with a
coder.FixptConfig object. Then use the codegen function -float2fixed option with
coder.FixptConfig to convert floating-point MATLAB code to fixed-point code.

Property Default Value
Auto-replace function ''
InputRange []
FunctionNamePrefix 'replacement_'
Architecture LookupTable (read only)
NumberOfPoints 1000
InterpolationDegree 1
ErrorThreshold 0.001
OptimizeLUTSize false
OptimizeIterations 25

See Also
Classes
coder.FixptConfig

Functions
codegen

Topics
“Replace the exp Function with a Lookup Table”
“Replace a Custom Function with a Lookup Table”

6 Function Reference for HDL Code Generation from MATLAB

6-10

“Replacing Functions Using Lookup Table Approximations”

Introduced in R2014b

 coder.approximation

6-11

coder.config
Create HDL Coder code generation configuration objects

Syntax
config_obj = coder.config('hdl')
config_obj = coder.config('fixpt')

Description
config_obj = coder.config('hdl') creates a coder.HdlConfig configuration
object for use with the HDL codegen function when generating HDL code from MATLAB
code.

config_obj = coder.config('fixpt') creates a coder.FixptConfig
configuration object for use with the HDL codegen function when generating HDL code
from floating-point MATLAB code. The coder.FixptConfig object configures the
floating-point to fixed-point conversion.

Examples

Generate HDL Code from Floating-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Create a coder.HdlConfig object, hdlcfg, with default settings.

hdlcfg = coder.config('hdl');

6 Function Reference for HDL Code Generation from MATLAB

6-12

Convert your floating-point MATLAB design to fixed-point, and generate HDL code. In this
example, the MATLAB design function name is mlhdlc_dti.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

See Also
codegen | coder.FixptConfig | coder.HdlConfig

Topics
“Generate HDL Code from MATLAB Code Using the Command Line Interface”

Introduced in R2013a

 coder.config

6-13

addDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Add design range specification to parameter

Syntax
addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

Description
addDesignRangeSpecification(fcnName,paramName,designMin, designMax)
specifies the minimum and maximum values allowed for the parameter, paramName, in
function, fcnName. The fixed-point conversion process uses this design range information
to derive ranges for downstream variables in the code.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

designMin — Minimum value allowed for this parameter
scalar

6 Function Reference for HDL Code Generation from MATLAB

6-14

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples

See Also

 addDesignRangeSpecification

6-15

addFunctionReplacement
Class: coder.FixptConfig
Package: coder

Replace floating-point function with fixed-point function during fixed-point conversion

Syntax
addFunctionReplacement(floatFn,fixedFn)

Description
addFunctionReplacement(floatFn,fixedFn) specifies a function replacement in a
coder.FixptConfig object. During floating-point to fixed-point conversion in the HDL
code generation workflow, the conversion process replaces the specified floating-point
function with the specified fixed-point function. The fixed-point function must be in the
same folder as the floating-point function or on the MATLAB path.

Input Arguments
floatFn — Name of floating-point function
'' (default) | string

Name of floating-point function, specified as a string.

fixedFn — Name of fixed-point function
'' (default) | string

Name of fixed-point function, specified as a string.

Examples

6 Function Reference for HDL Code Generation from MATLAB

6-16

Specify Function Replacement in Fixed-Point Conversion Configuration Object

Create a fixed-point code configuration object, fxpCfg, with a test bench,
myTestbenchName.

fxpCfg = coder.config('fixpt');
fxpCfg.TestBenchName = 'myTestbenchName';
fxpCfg.addFunctionReplacement('min', 'fi_min');
codegen -float2fixed fxpCfg designName

Specify that the floating-point function, min, should be replaced with the fixed-point
function, fi_min.

fxpCfg.addFunctionReplacement('min', 'fi_min');

When you generate code, the code generator replaces instances of min with fi_min
during floating-point to fixed-point conversion.

Alternatives
You can specify function replacements in the HDL Workflow Advisor. See “Function
Replacements”.

See Also
codegen | coder.FixptConfig | coder.config

 addFunctionReplacement

6-17

clearDesignRangeSpecifications
Class: coder.FixptConfig
Package: coder

Clear all design range specifications

Syntax
clearDesignRangeSpecifications()

Description
clearDesignRangeSpecifications() clears all design range specifications.

Examples

Clear a Design Range Specification
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now remove the design range
cfg.clearDesignRangeSpecifications()
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

See Also

6 Function Reference for HDL Code Generation from MATLAB

6-18

getDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Get design range specifications for parameter

Syntax
[designMin, designMax] = getDesignRangeSpecification(fcnName,
paramName)

Description
[designMin, designMax] = getDesignRangeSpecification(fcnName,
paramName) gets the minimum and maximum values specified for the parameter,
paramName, in function, fcnName.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

 getDesignRangeSpecification

6-19

Output Arguments
designMin — Minimum value allowed for this parameter
scalar

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples

Get Design Range Specifications
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Get the design range for the 'dti' function parameter 'u_in'
[designMin, designMax] = cfg.getDesignRangeSpecification('dti','u_in')

designMin =

 -1

designMax =

 1

See Also

6 Function Reference for HDL Code Generation from MATLAB

6-20

hasDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Determine whether parameter has design range

Syntax
hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

Description
hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)
returns true if the parameter, param_name in function, fcn, has a design range specified.

Input Arguments
fcnName — Name of function
string

Function name, specified as a string.
Example: ‘dti’
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Example: ‘dti’
Data Types: char

 hasDesignRangeSpecification

6-21

Output Arguments
hasDesignRange — Parameter has design range
true | false

Parameter has design range, returned as a boolean.
Data Types: logical

Examples

Verify That a Parameter Has a Design Range Specification
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

hasDesignRanges =

 1

See Also

6 Function Reference for HDL Code Generation from MATLAB

6-22

removeDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Remove design range specification from parameter

Syntax
removeDesignRangeSpecification(fcnName,paramName)

Description
removeDesignRangeSpecification(fcnName,paramName) removes the design
range information specified for parameter, paramName, in function, fcnName.

Input Arguments
fcnName — Name of function
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

 removeDesignRangeSpecification

6-23

Examples

Remove Design Range Specifications
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now clear the design ranges and verify that
% hasDesignRangeSpecification returns false
cfg.removeDesignRangeSpecification('dti', 'u_in')
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

See Also

6 Function Reference for HDL Code Generation from MATLAB

6-24

Class Reference for HDL Code
Generation from MATLAB

7

coder.FixptConfig class
Package: coder

Floating-point to fixed-point conversion configuration object

Description
A coder.FixptConfig object contains the configuration parameters that the HDL
codegen function requires to convert floating-point MATLAB code to fixed-point MATLAB
code during HDL code generation. Use the -float2fixed option to pass this object to
the codegen function.

Construction
fixptcfg = coder.config('fixpt') creates a coder.FixptConfig object for
floating-point to fixed-point conversion.

Properties
ComputeDerivedRanges

Enable derived range analysis.

Values: true|false (default)

ComputeSimulationRanges

Enable collection and reporting of simulation range data. If you need to run a long
simulation to cover the complete dynamic range of your design, consider disabling
simulation range collection and running derived range analysis instead.

Values: true (default)|false

DefaultFractionLength

Default fixed-point fraction length.

7 Class Reference for HDL Code Generation from MATLAB

7-2

Values: 4 (default) | positive integer

DefaultSignedness

Default signedness of variables in the generated code.

Values: 'Automatic' (default) | 'Signed' | 'Unsigned'

DefaultWordLength

Default fixed-point word length.

Values: 14 (default) | positive integer

DetectFixptOverflows

Enable detection of overflows using scaled doubles.

Values: true| false (default)

fimath

fimath properties to use for conversion.

Values: fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',
'ProductMode', 'FullPrecision', 'SumMode', 'FullPrecision') (default) |
string

FixPtFileNameSuffix

Suffix for fixed-point file names.

Values: '_fixpt' | string

LaunchNumericTypesReport

View the numeric types report after the software has proposed fixed-point types.

Values: true (default) | false

LogIOForComparisonPlotting

Enable simulation data logging to plot the data differences introduced by fixed-point
conversion.

 coder.FixptConfig class

7-3

Values: true (default) | false

OptimizeWholeNumber

Optimize the word lengths of variables whose simulation min/max logs indicate that they
are always whole numbers.

Values: true (default) | false

PlotFunction

Name of function to use for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. This
option takes precedence over PlotWithSimulationDataInspector.

The plot function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

Values: '' (default) | string

PlotWithSimulationDataInspector

Use Simulation Data Inspector for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

Values: true| false (default)

ProposeFractionLengthsForDefaultWordLength

Propose fixed-point types based on DefaultWordLength.

Values: true (default) | false

ProposeTargetContainerTypes

By default (false), propose data types with the minimum word length needed to represent
the value. When set to true, propose data type with the smallest word length that can

7 Class Reference for HDL Code Generation from MATLAB

7-4

represent the range and is suitable for C code generation (8,16,32, 64 …). For example,
for a variable with range [0..7], propose a word length of 8 rather than 3.

Values: true| false (default)

ProposeWordLengthsForDefaultFractionLength

Propose fixed-point types based on DefaultFractionLength.

Values: false (default) | true

ProposeTypesUsing

Propose data types based on simulation range data, derived ranges, or both.

Values: 'BothSimulationAndDerivedRanges' (default) |
'SimulationRanges'|'DerivedRanges'

SafetyMargin

Safety margin percentage by which to increase the simulation range when proposing
fixed-point types. The specified safety margin must be a real number greater than -100.

Values: 0 (default) | double

StaticAnalysisQuickMode

Perform faster static analysis.

Values: true | false (default)

StaticAnalysisTimeoutMinutes

Abort analysis if timeout is reached.

Values: '' (default) | positive integer

TestBenchName

Test bench function name or names, specified as a string or cell array of strings. You must
specify at least one test bench.

If you do not explicitly specify input parameter data types, the conversion uses the first
test bench function to infer these data types.

 coder.FixptConfig class

7-5

Values: '' (default) | string | cell array of strings

TestNumerics

Enable numerics testing.

Values: true| false (default)

Methods
addDesignRangeSpecification Add design range specification to parameter
addFunctionReplacement Replace floating-point function with fixed-point

function during fixed-point conversion
clearDesignRangeSpecifications Clear all design range specifications
getDesignRangeSpecification Get design range specifications for parameter
hasDesignRangeSpecification Determine whether parameter has design range
removeDesignRangeSpecification Remove design range specification from parameter

Examples

Generate HDL Code from Floating-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Create a coder.HdlConfig object, hdlcfg, with default settings.

hdlcfg = coder.config('hdl');

Convert your floating-point MATLAB design to fixed-point, and generate HDL code. In this
example, the MATLAB design function name is mlhdlc_dti.

7 Class Reference for HDL Code Generation from MATLAB

7-6

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

Alternatives
You can also generate HDL code from MATLAB code using the HDL Workflow Advisor. For
more information, see “HDL Code Generation and FPGA Synthesis from a MATLAB
Algorithm”.

See Also
codegen | coder.HdlConfig | coder.config

Topics
“Generate HDL Code from MATLAB Code Using the Command Line Interface”

 coder.FixptConfig class

7-7

coder.HdlConfig class
Package: coder

HDL codegen configuration object

Description
A coder.HdlConfig object contains the configuration parameters that the HDL
codegen function requires to generate HDL code. Use the -config option to pass this
object to the codegen function.

Construction
hdlcfg = coder.config('hdl') creates a coder.HdlConfig object for HDL code
generation.

Properties
Basic

AdderSharingMinimumBitwidth

Minimum bit width for shared adders, specified as a positive integer.

If ShareAdders is true and ResourceSharing is greater than 1, share adders only if
adder bit width is greater than or equal to AdderSharingMinimumBitwidth.

Values: integer greater than or equal to 2

ClockEdge

Specify active clock edge.

Values: 'Rising' (default) | 'Falling'

7 Class Reference for HDL Code Generation from MATLAB

7-8

DistributedPipeliningPriority

Priority for distributed pipelining algorithm.

DistributedPipeliningPriority
Value

Description

NumericalIntegrity (default) Prioritize numerical integrity when
distributing pipeline registers.

This option uses a conservative retiming
algorithm that does not move registers
across a component if the functional
equivalence to the original design is
unknown.

Performance Prioritize performance over numerical
integrity.

Use this option if your design requires a
higher clock frequency and the MATLAB
behavior does not need to strictly match the
generated code behavior.

This option uses a more aggressive
retiming algorithm that moves registers
across a component even if the modified
design’s functional equivalence to the
original design is unknown.

Values: 'NumericalIntegrity' (default) | 'Performance'

GenerateHDLTestBench

Generate an HDL test bench, specified as a logical.

Values: false (default) | true

HDLCodingStandard

HDL coding standard to follow and check when generating code. Generates a compliance
report showing errors, warnings, and messages.

Values: 'None' (default) | 'Industry'

 coder.HdlConfig class

7-9

HDLCodingStandardCustomizations

HDL coding standard rules and report customizations, specified using HDL coding
standard customization. If you want to customize the coding standard rules and report,
you must set HDLCodingStandard to 'Industry'.

Value: HDL coding standard customization object

HDLLintTool

HDL lint tool script to generate.

Values: 'None' (default) | 'AscentLint' | 'Leda' | 'SpyGlass' |'Custom'

HDLLintInit

HDL lint script initialization name, specified as a character vector.

HDLLintCmd

HDL lint script command.

If you set HDLLintTool to Custom, you must use %s as a placeholder for the HDL file
name in the generated Tcl script. Specify HDLLintCmd as a character vector using the
following format:

custom_lint_tool_command -option1 -option2 %s

HDLLintTerm

HDL lint script termination name, specified as a character vector.

InitializeBlockRAM

Specify whether to initialize all block RAM to '0' for simulation.

Values: true (default) | false

InlineConfigurations

Specify whether to include inline configurations in generated VHDL code.

When true, include VHDL configurations in files that instantiate a component.

7 Class Reference for HDL Code Generation from MATLAB

7-10

When false, suppress the generation of configurations and require user-supplied
external configurations. Set to false if you are creating your own VHDL configuration
files.

Values: true (default) | false

LoopOptimization

Loop optimization in generated code. See “Optimize MATLAB Loops”.

LoopOptimization Value Description
LoopNone (default) Do not optimize loops in generated code.
StreamLoops Stream loops.
UnrollLoops Unroll Loops.

MinimizeClockEnables

Specify whether to omit generation of clock enable logic.

When true, omit generation of clock enable logic wherever possible.

When false (default), generate clock enable logic.

MultiplierPartitioningThreshold

Specify maximum input bit width for hardware multipliers. If a multiplier input bit width
is greater than this threshold, HDL Coder splits the multiplier into smaller multipliers.

To improve your hardware mapping results, set this threshold to the input bit width of the
DSP or multiplier hardware on your target device.

Values: integer greater than or equal to 2

MultiplierSharingMinimumBitwidth

Minimum bit width for shared multipliers, specified as a positive integer.

If ShareMultipliers is true and ResourceSharing is greater than 1, share
multipliers only if multiplier bit width is greater than or equal to
MultiplierSharingMinimumBitwidth.

Values: integer greater than or equal to 2

 coder.HdlConfig class

7-11

InstantiateFunctions

Generate instantiable HDL code modules from functions.

Note If you enable InstantiateFunctions, UseMatrixTypesInHDL has no effect.

Values: false (default) | true

PreserveDesignDelays

Prevent distributed pipelining from moving design delays or allow distributed pipelining
to move design delays, specified as a logical.

Persistent variables and dsp.Delay System objects are design delays.

Values: false (default) | true

ShareAdders

Share adders, specified as a logical.

If true, share adders when ResourceSharing is greater than 1 and adder bit width is
greater than or equal to AdderSharingMinimumBitwidth.

Values: false (default) | true

ShareMultipliers

Share multipliers, specified as a logical.

If true, share multipliers when ResourceSharing is greater than 1, and multiplier bit
width is greater than or equal to MultiplierSharingMinimumBitwidth.

Values: true (default) | false

SimulateGeneratedCode

Simulate generated code, specified as a logical.

Values: false (default) | true

7 Class Reference for HDL Code Generation from MATLAB

7-12

SimulationIterationLimit

Maximum number of simulation iterations during test bench generation, specified as an
integer. This property affects only test bench generation, not simulation during fixed-point
conversion.

Values: unlimited (default) | positive integer

SimulationTool

Simulation tool name.

Values: 'ModelSim' (default) | 'ISIM'

SynthesisTool

Synthesis tool name.

Values: 'Xilinx ISE' (default) | 'Altera Quartus II' | 'Xilinx Vivado'

SynthesisToolChipFamily

Synthesis target chip family name, specified as a character vector.

Values: 'Virtex4' (default) | 'Family name'

SynthesisToolDeviceName

Synthesis target device name, specified as a character vector.

Values: 'xc4vsx35' (default) | 'Device name'

SynthesisToolPackageName

Synthesis target package name, specified as a character vector.

Values: 'ff668' (default) | 'Package name'

SynthesisToolSpeedValue

Synthesis target speed, specified as a character vector.

Values: '-10' (default) | 'Speed value'

 coder.HdlConfig class

7-13

SynthesizeGeneratedCode

Synthesize generated code or not, specified as a logical.

Values: false (default) | true

TargetLanguage

Target language of the generated code.

Values: 'VHDL' (default) | 'Verilog'

TestBenchName

Test bench function name, specified as a character vector. You must specify a test bench.

Values: '' (default) | 'Testbench name'

TimingControllerArch

Timing controller architecture.

TimingControllerArch Value Description
default (default) Do not generate a reset for the timing

controller.
resettable Generate a reset for the timing controller.

TimingControllerPostfix

Postfix to append to design name to form name of timing controller, specified as a
character vector.

Values: '_tc' (default) | 'Postfix'

UseFileIOInTestBench

Create and use data files for reading and writing test bench input and output data.

Values: 'on' (default) | 'off'

UseMatrixTypesInHDL

Generate 2-D matrix types in HDL code for MATLAB matrices, specified as a logical.

7 Class Reference for HDL Code Generation from MATLAB

7-14

UseMatrixTypesInHDL Value Description
false (default) Generate HDL vectors with index computation logic for

MATLAB matrices. This option can use more area in the
synthesized hardware.

true Generate HDL matrices for MATLAB matrices. This
option can save area in the synthesized hardware.

The following requirements apply:

• Matrix elements cannot be complex or struct data
types.

• You cannot use linear indexing to specify matrix
elements. For example, if you have a 3x3 matrix, A,
you cannot use A(4). Instead, use A(2,1).

You can also use a colon operator in either the row
or column subscript, but not both. For example, you
can use A(3,1:3) and A(2:3,1), but not A(2:3,
1:3).

• If you enable InstantiateFunctions,
UseMatrixTypesInHDL has no effect.

VHDLLibraryName

Target library name for generated VHDL code, specified as a character vector.

Values: 'work' (default) | 'Library name'

Cosimulation

GenerateCosimTestBench

Generate a cosimulation test bench or not, specified as a logical.

Values: false (default) | true

SimulateCosimTestBench

Simulate generated cosimulation test bench, specified as a logical. This option is
ignored if GenerateCosimTestBench is false.

 coder.HdlConfig class

7-15

Values: false (default) | true

CosimClockEnableDelay

Time (in clock cycles) between deassertion of reset and assertion of clock enable.

Values: 0 (default)

CosimClockHighTime

The number of nanoseconds the clock is high.

Values: 5 (default)

CosimClockLowTime

The number of nanoseconds the clock is low.

Values: 5 (default)

CosimHoldTime

The hold time for input signals and forced reset signals, specified in nanoseconds.

Values: 2 (default)

CosimLogOutputs

Log and plot outputs of the reference design function and HDL simulator.

Values: false (default) | true

CosimResetLength

Specify time (in clock cycles) between assertion and deassertion of reset.

Values: 2 (default)

CosimRunMode

HDL simulator run mode during simulation. When in Batch mode, you do not see the HDL
simulator GUI, and the HDL simulator automatically shuts down after simulation.

Values: Batch (default) | GUI

7 Class Reference for HDL Code Generation from MATLAB

7-16

CosimTool

HDL simulator for the generated cosim test bench.

Values: ModelSim (default) | Incisive

FPGA-in-the-loop

GenerateFILTestBench

Generate a FIL test bench or not, specified as a logical.

Values: false (default) | true

SimulateFILTestBench

Simulate generated cosimulation test bench, specified as a logical. This option is
ignored if GenerateCosimTestBench is false.

Values: false (default) | true

FILBoardName

FPGA board name, specified as a character vector. You must override the default value
and specify a valid board name.

Values: 'Choose a board' (default) | 'A board name'

FILBoardIPAddress

IP address of the FPGA board, specified as a character vector. You must enter a valid IP
address.

Values: 192.168.0.2 (default)

FILBoardMACAddress

MAC address of the FPGA board, specified as a character vector. You must enter a valid
MAC address.

Values: 00-0A-35-02-21-8A (default)

 coder.HdlConfig class

7-17

FILAdditionalFiles

List of additional source files to include, specified as a character vector. Separate file
names with a semi-colon (";").

Values: '' (default) | 'Additional source files'

FILLogOutputs

Log and plot outputs of the reference design function and FPGA.

Values: false (default) | true

Examples

Generate Verilog Code from MATLAB Code

Create a coder.HdlConfig object, hdlcfg.

hdlcfg = coder.config('hdl'); % Create a default 'hdl' config

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Set the target language to Verilog.

hdlcfg.TargetLanguage = 'Verilog';

Generate HDL code from your MATLAB design. In this example, the MATLAB design
function name is mlhdlc_dti.

codegen -config hdlcfg mlhdlc_dti

Generate Cosim and FIL Test Benches

Create a coder.FixptConfig object with default settings and provide test bench name.

7 Class Reference for HDL Code Generation from MATLAB

7-18

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'mlhdlc_sfir_tb';

Create a coder.HdlConfig object with default settings and set enable rate.

hdlcfg = coder.config('hdl'); % Create a default 'hdl' config
hdlcfg.EnableRate = 'DUTBaseRate';

Instruct MATLAB to generate a cosim test bench and a FIL test bench. Specify FPGA
board name.

hdlcfg.GenerateCosimTestBench = true;
hdlcfg.FILBoardName = 'Xilinx Virtex-5 XUPV5-LX110T development board';
hdlcfg.GenerateFILTestBench = true;

Perform code generation, Cosim test bench generation, and FIL test bench generation.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_sfir

Alternatives
You can also generate HDL code from MATLAB code using the HDL Workflow Advisor. For
more information, see “HDL Code Generation and FPGA Synthesis from a MATLAB
Algorithm”.

See Also
Functions
codegen | coder.config | hdlcoder.CodingStandard

Classes
coder.FixptConfig

Properties
HDL Coding Standard Customization

Topics
“Generate HDL Code from MATLAB Code Using the Command Line Interface”

 coder.HdlConfig class

7-19

Shared Class and Function
Reference for HDL Code Generation
from MATLAB and Simulink

8

hdlcoder.CodingStandard
Create HDL coding standard customization object

Syntax
cso = hdlcoder.CodingStandard(standardName)

Description
cso = hdlcoder.CodingStandard(standardName) creates an HDL coding standard
customization object that you can use to customize the rules and the appearance of the
coding standard report.

If you do not want to customize the rules or appearance of the coding standard report,
you do not need to create an HDL coding standard customization object.

Examples

Customize coding standard rules for MATLAB to HDL workflow

Create an HDL coding standard customization object, cso.

cso = hdlcoder.CodingStandard('Industry');

Customize the coding standard options as follows:

• Do not show passing rules in the coding standard report.
• Set the maximum if-else nesting depth to 2.
• Disable the check for line length.

cso.ShowPassingRules.enable = false;
cso.IfElseNesting.depth = 2;
cso.LineLength.enable = false;

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-2

Create an HDL codegen configuration object.

hdlcfg = coder.config('hdl');

Specify the coding standard and coding standard customization object.

hdlcfg.HDLCodingStandard = 'Industry';
hdlcfg.HDLCodingStandardCustomizations = cso;

Specify your test bench function name. In this example, the test bench function is
mlhdlc_dti_tb.

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Generate HDL code for the design and check the code according to the customized HDL
coding standard rules. In this example, the design function is mlhdlc_dti.

codegen -config hdlcfg mlhdlc_dti

Customize coding standard rules for Simulink to HDL workflow

Create an HDL coding standard customization object

• Load the sfir_fixed model
• Create a coding standard customization object cso

load_system('sfir_fixed')
cso = hdlcoder.CodingStandard('Industry');

Customize the coding standard options

• Do not show passing rules in the report.
• Set maximum line length to 80 characters.
• Check that module, instance, and entity names are between 5 and 50 characters long.

cso.ShowPassingRules.enable = false;
cso.LineLength.length = 80;
cso.ModuleInstanceEntityNameLength.length = [5 50];

Generate HDL code for your design

Generate HDL code and check it according to the customized HDL coding standard rules.
The DUT subsystem is symmetric_fir.

 hdlcoder.CodingStandard

8-3

makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry',...
 'HDLCodingStandardCustomizations',cso, 'TargetDirectory', 'C:/coding_standard/hdlsrc')

Generating HDL for 'sfir_fixed/symmetric_fir'.
Starting HDL check.
Begin VHDL Code Generation for 'sfir_fixed'.
Working on sfir_fixed/symmetric_fir as C:\coding_standard\hdlsrc\sfir_fixed\symmetric_fir.vhd.
Industry Compliance report with 4 errors, 77 warnings, 6 messages.
Generating Industry Compliance Report symmetric_fir_Industry_report.html
Creating HDL Code Generation Check Report file://C:\coding_standard\hdlsrc\sfir_fixed\symmetric_fir_report.html
HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

Input Arguments
standardName — HDL coding standard name
'Industry'

Specify the HDL coding standard to customize. The standardName value must match the
HDLCodingStandard property value.
Example: 'Industry'

Output Arguments
cso — HDL coding standard customizations
HDL coding standard customization object

HDL coding standard customizations, returned as an HDL coding standard customization
object.

See Also
Properties
HDL Coding Standard Customization

Topics
“Generate an HDL Coding Standard Report from Simulink”

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-4

“Generate an HDL Coding Standard Report from MATLAB”
“Choose Coding Standard and Report Options”
“HDL Coding Standard Report”

Introduced in R2014b

 hdlcoder.CodingStandard

8-5

HDL Coding Standard Customization
Properties
Customize HDL coding standard

Description
HDL coding standard customization properties control how HDL Coder generates and
checks code according to a specified coding standard. By changing property values, you
can customize the rules and the appearance of the coding standard report.

Use dot notation to refer to a particular object and property:

cso = hdlcoder.CodingStandard('Industry');
len = cso.SignalPortParamNameLength.length;
cso.ShowPassingRules.enable = false;

The generated code follows the customized coding standard rules as much as possible.
However, if following a coding standard rule could cause the HDL code to be
uncompilable or unsynthesizable, the coder does not follow the rule.

Properties
Coding Standard Report

ShowPassingRules — Show passing rules in coding standard report
structure

Show or do not show passing rules in coding standard report, specified as a structure
with the following field.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-6

Field Description
enable Set to true to show passing rules in coding

standard report.

Set to false to show only rules with errors
or warnings.

The default is true.

Basic Coding Rules

HDLKeywords — Check for HDL keywords in design names
structure

Check for HDL keywords in design names (rule CGSL-1.A.A.3), specified as a structure
with the following field.

Field Description
enable Set to true to check for HDL keywords in

design names.

Set to false if you do not want to check for
HDL keywords in design names.

The default is true.

DetectDuplicateNamesCheck — Check for duplicate names
structure

Check for duplicate names in the design (rule CGSL-1.A.A.5), specified as a structure with
the following field.

Field Description
enable Set to true to check for duplicate names in

the design.

Set to false if you do not want to check for
duplicate names in the design.

The default is true.

 HDL Coding Standard Customization Properties

8-7

ModuleInstanceEntityNameLength — Check module, instance, and entity name
length
structure

Check for module, instance, and entity name lengths (rule CGSL-1.A.B.1), specified as a
structure with the following fields.

Field Description
enable Set to true to check the length of module,

instance, and entity names.

Set to false if you do not want to check
the length of module, instance, and entity
names.

The default is true.
length Minimum and maximum length of module,

instance, and entity name names, specified
as a 2-element array of positive integers.

The first element is the minimum length,
and the second element is the maximum
length. The default is [2 32].

SignalPortParamNameLength — Check signal, port, and parameter name length
structure

Check for signal, port, and parameter name lengths (rule CGSL-1.A.C.3), specified as a
structure with the following fields.

Field Description
enable Set to true to check the length of signal,

port, and parameter names.

Set to false if you do not want to check
the length of signal, port, and parameter
names.

The default is true.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-8

Field Description
length Minimum and maximum length of signal,

port, and parameter names, specified as a
2-element array of positive integers.

The first element is the minimum length,
and the second element is the maximum
length. The default is [2 40].

RTL Description Rules

MinimizeClockEnableCheck — Check for clock enable signals
structure

Check for clock enable signals in the generated code (rule CGSL-2.C.C.4), specified as a
structure with the following field.

Field Description
enable Set to true to minimize clock enables in

the generated code and check for clock
enable signals after code generation.

Set to false if you do not want to check for
clock enable signals in the generated code.

The default is false.

RemoveResetCheck — Check for reset signals
structure

Check for reset signals in the design (rule CGSL-2.C.C.5), specified as a structure with the
following field.

 HDL Coding Standard Customization Properties

8-9

Field Description
enable Set to true to minimize reset signals in the

generated code and check for reset signals
after code generation.

Set to false if you do not want to check for
reset signals in the design.

The default is false.

AsynchronousResetCheck — Check for asynchronous reset signals in the
generated code
structure

Check for asynchronous reset signals in the generated code (CGSL-2.C.C.6), specified as a
structure with the following field.

Field Description
enable Set to true to check for asynchronous

reset signals in the generated code.

Set to false if you do not want to check for
asynchronous reset signals in the generated
code.

The default is true.

MinimizeVariableUsage — Minimize use of variables
structure

Minimize use of variables (rule CGSL-2.G), specified as a structure with the following
field.

Field Description
enable Set to true to minimize use of variables.

Set to false if you do not want to minimize
use of variables.

The default is false.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-10

ConditionalRegionCheck — Check for length of conditional statements in a
process or always block
structure

Check for length of conditional statements (if-else, case, and loops) which are described
separately in a process block or an always block (rule CGSL-2.F.B.1), specified as a
structure with the following fields.

Field Description
enable Set to true to check length of conditional

statements.

Set to false if you do not want to check
the length of conditional statements.

The default is true.
length Number of conditional statements which

are described separately within a process
block (VHDL) or an always block (Verilog).

The default is 1.

IfElseNesting — Check if-else statement nesting depth
structure

Check for if-else statement nesting depth (rule CGSL-2.G.C.1a), specified as a structure
with the following fields.

Field Description
enable Set to true to check if-else statement

nesting depth.

Set to false if you do not want to check if-
else statement nesting depth.

The default is true.

 HDL Coding Standard Customization Properties

8-11

Field Description
depth Maximum if-else statement nesting depth,

specified as a positive integer.

The default is 3.

IfElseChain — Check if-else statement chain length
structure

Check for if-else statement chain length (rule CGSL-2.G.C.1c), specified as a structure
with the following fields.

Field Description
enable Set to true to check if-else statement chain

length.

Set to false if you do not want to check if-
else statement chain length.

The default is true.
length Maximum length of if-else statement chain,

specified as a positive integer.

The default is 7.

MultiplierBitWidth — Check multiplier bit width
structure

Check for multiplier bit width (rule CGSL-2.J.F.5), specified as a structure with the
following fields.

Field Description
enable Set to true to check multiplier bit width.

Set to false if you do not want to check
multiplier bit width.

The default is true.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-12

Field Description
width Maximum multiplier bit width, specified as

a positive integer.

The default is 16.

RTL Design Rules

LineLength — Check generated code line length
structure

Check for generated code line length (rule CGSL-3.A.D.5), specified as a structure with
the following fields.

Field Description
enable Set to true to check line lengths in

generated code.

Set to false if you do not want to check
line lengths in generated code.

The default is true.
length Maximum number of characters per line in

generated code, specified as a positive
integer.

The default is 110.

NonIntegerTypes — Check for non-integer constants
structure

Check for non-integer constants (rule CGSL-3.B.D.1), specified as a structure with the
following field.

 HDL Coding Standard Customization Properties

8-13

Field Description
enable Set to true to check for non-integer

constants.

Set to false if you do not want to check for
non-integer constants.

The default is true.

See Also
hdlcoder.CodingStandard

Topics
“Generate an HDL Coding Standard Report from MATLAB”
“Generate an HDL Coding Standard Report from Simulink”
“HDL Coding Standard Report”
“Basic Coding Practices”
“RTL Description Techniques”
“RTL Design Methodology Guidelines”

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-14

hdl.BlackBox System object
Package: hdl

Black box for including custom HDL code

Description
hdl.BlackBox provides a way to include custom HDL code, such as legacy or
handwritten HDL code, in a MATLAB design intended for HDL code generation.

When you create a user-defined System object that inherits from hdl.BlackBox, you
specify a port interface and simulation behavior that matches your custom HDL code.

HDL Coder simulates the design in MATLAB using the behavior you define in the System
object. During code generation, instead of generating code for the simulation behavior,
the coder instantiates a module with the port interface you specify in the System object.

To use the generated HDL code in a larger system, you include the custom HDL source
files with the rest of the generated code.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
B = hdl.BlackBox creates a black box System object for HDL code generation.

Properties
AddClockEnablePort — Add clock enable port
'on' (default) | 'off'

 hdl.BlackBox System object

8-15

If 'on', add a clock enable input port to the interface generated for the black box System
object. The name of the port is specified by ClockEnableInputPort.

AddClockPort — Add clock port
'on' (default) | 'off'

If 'on', add a clock input port to the interface generated for the black box System object.
The name of the port is specified by ClockInputPort.

AddResetPort — Add reset port
'on' (default) | 'off'

If 'on', add a reset input port to the interface generated for the black box System object.
The name of the port is specified by ResetInputPort.

AllowDistributedPipelining — Register placement for distributed pipelining
'off' (default) | 'on'

If 'on', allow HDL Coder to move registers across the black box System object, from
input to output or output to input.

ClockEnableInputPort — Clock enable input port name
'clk_enable' (default) | character vector

HDL name for clock enable input port, specified as a character vector.

ClockInputPort — Clock input port name
'clk' (default) | character vector

HDL name for clock input port, specified as a character vector.

EntityName — Module or entity name
System object instance name (default) | character vector

VHDL entity or Verilog module name generated for the black box System object, specified
as a character vector.
Example: 'myBlackBoxName'

ImplementationLatency — Latency in clock cycles
-1 (default) | integer

Latency of black box System object in clock cycles, specified as an integer.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-16

If 0 or greater, this value is used for delay balancing.

If -1, latency is unknown. This disables delay balancing.

InlineConfigurations — Generate VHDL configuration
InlineConfigurations global property value (default) | 'on' | 'off'

When 'on', generate a VHDL configuration.

When 'off', do not generate a VHDL configuration and require a user-supplied external
configuration. Set to 'off' if you are creating your own VHDL configuration.

InputPipeline — Input pipeline stages
0 (default) | positive integer

Number of input pipeline stages, or pipeline depth, to insert in the generated code.

OutputPipeline — Output pipeline stages
0 (default) | positive integer

Number of output pipeline stages, or output pipeline depth, to insert in the generated
code.

ResetInputPort — Reset port name
'reset' (default) | character vector

HDL name for reset input port, specified as a character vector.

VHDLArchitectureName — VHDL architecture name
'rtl' (default) | character vector

VHDL architecture name, specified as a character vector. The coder generates the
architecture name only if InlineConfigurations is 'on'.

VHDLComponentLibrary — VHDL component library name
'work' (default) | character vector

Library from which to load the VHDL component, specified as a character vector.

NumInputs — Number of custom input ports
1 (default) | positive integer

Number of additional input ports in the custom HDL code, specified as a positive integer.

 hdl.BlackBox System object

8-17

NumOutputs — Number of custom output ports
1 (default) | positive integer

Number of additional output ports in the custom HDL code, specified as a positive integer.

See Also
coder.HdlConfig

Topics
“Integrate Custom HDL Code Into MATLAB Design”
“Generate a Board-Independent IP Core from MATLAB”
“Generate Black Box Interface for Subsystem”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-18

hdl.RAM System object
Package: hdl

Single, simple dual, or dual-port RAM for memory read/write access

Description
hdl.RAM reads from and writes to memory locations for a single, simple dual, or dual-
port RAM. The output data is delayed one step. If your input data is scalar, the address
and write enable inputs must be scalar, andHDL Coder infers a single RAM block. If your
data is a vector, HDL Coder infers an array of parallel RAM banks. With vector data input,
the address and write enable inputs can be both scalars or vectors. When you specify
scalar inputs for the write enable and address ports, the system object applies the same
operation to each RAM bank.

The hdl.RAM System object can have 231 bytes of internal storage. The RAM size takes
into account the address width, the number of bytes that are used to store each word, and
the number of RAM banks.

To read from or write to memory locations in the RAM:

1 Create the hdl.RAM object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
ram = hdl.RAM
ram = hdl.RAM(Name,Value)

 hdl.RAM System object

8-19

Description
ram = hdl.RAM returns a single port RAM System object that you can write to or read
from a memory location.

ram = hdl.RAM(Name,Value) returns a single, simple dual, or dual port RAM System
object with properties set using one or more name-value pairs. Enclose each property
name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

RAMType — Type of RAM
'Single port' (default) | 'Simple dual port' | 'Dual port'

Type of RAM, specified as either:

• 'Single port' — Create a single port RAM with Write data, Address, and Write
enable as inputs and Read data as the output.

• 'Simple dual port' — Create a simple dual port RAM with Write data, Write
address, Write enable, and Read address as inputs and data from read address as the
output.

• 'Dual port' — Create a dual port RAM with Write data, Write address, Write
enable, and Read address as inputs and data from read address and write address as
the outputs.

WriteOutputValue — Behavior for Write output
'New data' (default) | 'Old data'

Behavior for Write output, specified as either:

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-20

• 'New data' — Send out new data at the address to the output.
• Old data' — Send out old data at the address to the output.

Dependencies

Specify this property when you set RamType to 'Single port' or 'Dual port'. This
property does not apply for Simple Dual Port RAM object.

RAMInitialValue — Initial output of RAM
'0.0' (default) | Scalar | Vector

Initial simulation output of the System object, specified as either:

• A scalar value.
• A vector with one-to-one mapping between the initial value and the RAM words.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
dataOut = ram(wrData,rwAddress,wrEn)

rdDataOut = ram(wrData,wrAddress,wrEn,rdAddress)

[wrDataOut,rdDataOut] = ram(wrData,wrAddress,wrEn,rdAddress)

Description
dataOut = ram(wrData,rwAddress,wrEn) reads the value in memory location
rwAddress when wrEn is false. When wrEn is true, you write the value wrData into the
memory location rwAddress. dataOut is the new or old data at rwAddress. Use this
syntax when you create a single port RAM System object.

 hdl.RAM System object

8-21

rdDataOut = ram(wrData,wrAddress,wrEn,rdAddress) writes the value wrData
into memory location wrAddress when wrEn is true. rdDataOut is the old data at the
address location rdAddress. Use this syntax when you create a simple dual port RAM
System object.

[wrDataOut,rdDataOut] = ram(wrData,wrAddress,wrEn,rdAddress) writes the
value wrData into the memory location wrAddress when wrEn is true. wrDataOut is the
new or old data at memory location wrAddress. rdDataOut is the old data at the
address location rdAddress. Use this syntax when you create a dual port RAM System
object.

Input Arguments
wrData — Write data
Scalar (default) | Vector

Data that you write into the RAM memory location when wrEn is true. This value can be
double, single, integer, or a fixed-point (fi) object, and can be real or complex.
Data Types: single | double | int8 | int16 | uint8 | uint16 | fi

rwAddress — Write or Read address
Scalar (default) | Vector

Address that you write the wrData into when wrEn is true. The System object reads the
value in memory location rwAddress when wrEn is false. This value can be either
fixed-point (fi) or integer, and must be real and unsigned. Specify this address
when you create a single port RAM object.
Data Types: uint8 | uint16 | fi

wrEn — Write enable
Scalar (default) | Vector

When wrEn is true, you write the wrData into the RAM memory location. If you create a
single port RAM, the System object reads the value in the memory location when wrEn is
false. This value must be logical.
Data Types: logical

rdAddress — Read address
Scalar (default) | Vector

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-22

Address that you read the data from when you create a simple dual port RAM or dual port
RAM System object. This value can be either fixed-point (fi) or integer, and must
be real and unsigned.
Data Types: uint8 | uint16 | fi

wrAddress — Write address
Scalar (default) | Vector

Address that you write the data into when you create a simple dual port RAM or dual port
RAM System object. This value can be either fixed-point (fi) or integer, and must
be real and unsigned.
Data Types: uint8 | uint16 | fi

Output Arguments
dataOut — Output data
Scalar (default) | Vector

Output data that the System object reads from the memory location rwAddress a single
port RAM object when wrEn is false.

rdDataOut — Data from Read address
Scalar (default) | Vector

Old output data that the System object reads from the memory location rdAddress of a
simple dual port RAM or dual port RAM System object.

wrDataOut — Data from Write address
Scalar (default) | Vector

New or old output data that the System object reads from the memory location
wrAddress of a simple dual port RAM or dual port RAM System object.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

 hdl.RAM System object

8-23

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Observe Previous Data at Write Time

Construct System object to read from or write to a memory location in RAM. Set
WriteOutputValue to Old data to return the previous value stored at the write
address.

The output data port corresponds to the read/write address passed in. During a write
operation, the old data at the write address is sent out as the output.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

ram_1p = hdl.RAM('RAMType','Single port',...
 'WriteOutputValue','Old data')

ram_1p =
 hdl.RAM with properties:

 RAMType: 'Single port'
 WriteOutputValue: 'Old data'
 RAMInitialValue: 0

dataLength = 10;
dataIn = 1:10;
dataOut = zeros(1,dataLength);

Write a count pattern to the memory. Previous values on the first writes are all zero.

for ii = 1:dataLength
 addressIn = uint8(ii-1);

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-24

 writeEnable = true;
 dataOut(ii) = ram_1p(dataIn(ii),addressIn,writeEnable);
end
dataOut

dataOut = 1×10

 0 0 0 0 0 0 0 0 0 0

Read the data back.

for ii = 1:dataLength
 addressIn = uint8(ii-1);
 writeEnable = false;
 dataOut(ii) = ram_1p(dataIn(ii),addressIn,writeEnable);
end
dataOut

dataOut = 1×10

 0 1 2 3 4 5 6 7 8 9

Now, write the count in reverse order. The previous values are the original count.

for ii = 1:dataLength
 addressIn = uint8(ii-1);
 writeEnable = true;
 dataOut(ii) = ram_1p(dataIn(dataLength-ii+1),addressIn,writeEnable);
end
dataOut

dataOut = 1×10

 10 1 2 3 4 5 6 7 8 9

Read/Write Single-Port RAM

Create System object that writes to a single port RAM and reads the newly written value.

 hdl.RAM System object

8-25

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Construct single-port RAM System object. When you write a location, the object returns
the new value. The size of the RAM is inferred from the bitwidth of the address and write
data on the first call to the object.

ram_1p = hdl.RAM('RAMType','Single port','WriteOutputValue','New data');
dataLength = 16;
[dataIn,dataOut] = deal(uint8(zeros(1,dataLength)));

Write randomly generated data to the System object, and then read data back out again.

for ii = 1:dataLength
 dataIn(ii) = randi([0 63],1,1,'uint8');
 addressIn = fi((ii-1),0,4,0);
 writeEnable = true;
 dataOut(ii) = ram_1p(dataIn(ii),addressIn,writeEnable);
end
dataOut

dataOut = 1x16 uint8 row vector

 0 52 57 8 58 40 6 17 35 61 61 10 62 61 31 51

for ii = 1:dataLength
 addressIn = fi((ii-1),0,4,0);
 writeEnable = false;
 dataOut(ii) = ram_1p(dataIn(ii),addressIn,writeEnable);
end
dataOut

dataOut = 1x16 uint8 row vector

 9 52 57 8 58 40 6 17 35 61 61 10 62 61 31 51

Create Simple Dual-Port RAM System Object

Construct System object to read from and write to different memory locations in RAM.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-26

The output data port corresponds to the read address. If a read operation is performed at
the same address as the write operation, old data at that address is read out as the
output. The size of the RAM is inferred from the bitwidth of the address and write data on
the first call to the object.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

ram_2p = hdl.RAM('RAMType','Simple dual port');
dataLength = 16;
[dataIn,dataOut] = deal(uint8(zeros(1,dataLength)));

Write randomly generated data to the System object, and read the old data from the same
address.

for ii = 1:dataLength
 dataIn(ii) = randi([0 63],1,1,'uint8');
 wrAddr = fi((ii-1),0,4,0);
 writeEnable = true;
 ataOut(ii) = ram_2p(dataIn(ii),wrAddr,writeEnable,wrAddr);
end
dataOut

dataOut = 1x16 uint8 row vector

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Write and read from different addresses. The object returns the read result after one
cycle delay.

for ii = 1:dataLength
 wrAddr = fi((ii-1),0,4,0);
 rdAddr = fi(dataLength-ii+1,0,4,0);
 writeEnable = true;
 dataOut(ii) = ram_2p(dataIn(ii),wrAddr,writeEnable,rdAddr);
end
dataOut

dataOut = 1x16 uint8 row vector

 0 9 9 51 31 61 62 10 61 61 35 17 6 40 58 8

 hdl.RAM System object

8-27

Create Dual-Port RAM System Object

Construct System object to read from and write to different memory locations in RAM.

There are two output ports: a write output data port and a read output data port. The
write output data port sends out the new data at the write address. The read output data
port sends out the old data at the read address. The size of the RAM is inferred from the
bitwidth of the address and write data on the first call to the object.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

ram_2p = hdl.RAM('RAMType','Dual port','WriteOutputValue','New data');
dataLength = 16;
[dataIn,wrDataOut,rdDataOut] = deal(uint8(zeros(1,dataLength)));

Write randomly generated data to the System object, and read the old data from the same
address.

for ii = 1:dataLength
 dataIn(ii) = randi([0 63],1,1,'uint8');
 wrAddr = fi((ii-1),0,4,0);
 writeEnable = true;
 [wrDataOut(ii),rdDataOut(ii)] = ram_2p(dataIn(ii),wrAddr,writeEnable,wrAddr);
end
wrDataOut

wrDataOut = 1x16 uint8 row vector

 0 52 57 8 58 40 6 17 35 61 61 10 62 61 31 51

rdDataOut

rdDataOut = 1x16 uint8 row vector

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Write and read from different addresses. The object returns the read result after one
cycle delay.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-28

for ii = 1:dataLength
 wrAddr = fi((ii-1),0,4,0);
 rdAddr = fi(dataLength-ii+1,0,4,0);
 writeEnable = true;
 [wrDataOut(ii),rdDataOut(ii)] = ram_2p(dataIn(ii),wrAddr,writeEnable,rdAddr);
end
wrDataOut

wrDataOut = 1x16 uint8 row vector

 9 52 57 8 58 40 6 17 35 61 61 10 62 61 31 51

rdDataOut

rdDataOut = 1x16 uint8 row vector

 0 9 9 51 31 61 62 10 61 61 35 17 6 40 58 8

Create Dual-Port RAM with Multiple Banks

Create a System object that can write vector data to a dual-port RAM and read vector
data out. Each element of the vector corresponds to a separate bank of RAM. This
example creates 4 16-bit banks. Each bank has eight entries.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Construct dual-port RAM System object.

ram_2p = hdl.RAM('RAMType','Dual port','WriteOutputValue','New data');

Create vector write data and addresses. Use a 3-bit address (for 8 locations), and write
16-bit data. Read and write addresses are independent. Allocate memory for the output
data.

ramDataIn = fi(randi((2^16)-1,1,4),0,16,0);
ramReadAddr = fi([1,1,1,1],0,3,0);
ramWriteAddr = fi([1,1,1,1],0,3,0);
[wrOut,rdOut] = deal(fi(zeros(1,4),0,16,0));

 hdl.RAM System object

8-29

First, write locations in bank 1 and 4, then read all banks. The write data is echoed in the
wrOut output argument. The object returns read results after one cycle delay.

[wrOut,rdOut] = ram_2p(ramDataIn,ramWriteAddr,[true,false,false,true],ramReadAddr);
[wrOut,rdOut] = ram_2p(ramDataIn,ramWriteAddr,[false,false,false,false],ramReadAddr);
[wrOut,rdOut] = ram_2p(ramDataIn,ramWriteAddr,[false,false,false,false],ramReadAddr)

wrOut =
 53393 0 0 59859

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 0

rdOut =
 53393 0 0 59859

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 0

Algorithms
In your Simulink model, you can use the hdl.RAM inside a MATLAB System or a MATLAB
Function block. If you log the output of a MATLAB System block, the output data has at
least three dimensions because the MATLAB System block has at least two dimensions,
and the time data adds a third dimension. For example, if you input scalar data to the
block, the logged output data has the dimension 1x1xN, where N is the number of time
steps. To obtain an output dimension that is same as the input dimension, add a Reshape
block at the output with Output dimensionality set to Derive from reference
input port.

RAM Inference with Scalar Data
If your data is scalar, the RAM size, or number of locations, is inferred from the data type
of the address variable.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-30

Data type of address variable RAM address size (bits)
single or double 16
uintN N
embedded.fi WordLength

The maximum RAM address size is 32 bits.

RAM Inference with Vector Data
If your data is a vector, HDL Coder generates an array of parallel RAM banks. The
number of elements in the vector determines the number of RAM banks. The size of each
RAM bank is inferred from the data type of the address variable.

Data type of address variable RAM address size (bits)
single or double 16
uintN N
embedded.fi WordLength

The maximum RAM bank address size is 32 bits.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 hdl.RAM System object

8-31

See Also
Blocks
Dual Port RAM | Dual Rate Dual Port RAM | Simple Dual Port RAM | Single Port RAM

Topics
“HDL Code Generation from hdl.RAM System Object”
“Getting Started with RAM and ROM in Simulink®”
“Implement RAM Using MATLAB Code”
“HDL Code Generation for System Objects”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-32

coder.hdl.loopspec
Unroll or stream loops in generated HDL code

Syntax
coder.hdl.loopspec('unroll')
coder.hdl.loopspec('unroll',unroll_factor)
coder.hdl.loopspec('stream')
coder.hdl.loopspec('stream',stream_factor)

Description
coder.hdl.loopspec('unroll') fully unrolls a loop in the generated HDL code.
Instead of a loop statement, the generated code contains multiple instances of the loop
body, with one loop body instance per loop iteration.

The coder.hdl.loopspec pragma does not affect MATLAB simulation behavior.

Note If you specify the coder.unroll pragma, this pragma takes precedence over
coder.hdl.loopspec. coder.hdl.loopspec has no effect.

coder.hdl.loopspec('unroll',unroll_factor) unrolls a loop by the specified
unrolling factor, unroll_factor, in the generated HDL code.

The generated HDL code is a loop statement that contains unroll_factor instances of
the original loop body. The number of loop iterations in the generated code is
(original_loop_iterations / unroll_factor). If (original_loop_iterations /
unroll_factor) has a remainder, the remaining iterations are fully unrolled as loop
body instances outside the loop.

This pragma does not affect MATLAB simulation behavior.

Note If you specify the coder.unroll pragma, this pragma takes precedence over
coder.hdl.loopspec. coder.hdl.loopspec has no effect.

 coder.hdl.loopspec

8-33

coder.hdl.loopspec('stream') generates a single instance of the loop body in the
HDL code. Instead of using a loop statement, the generated code implements local
oversampling and added logic to match the functionality of the original loop.

You can specify this pragma for loops at the top level of your MATLAB design.

This pragma does not affect MATLAB simulation behavior.

Note If you specify the coder.unroll pragma, this pragma takes precedence over
coder.hdl.loopspec. coder.hdl.loopspec has no effect.

coder.hdl.loopspec('stream',stream_factor) unrolls the loop with
unroll_factor set to original_loop_iterations / stream_factor rounded down
to the nearest integer, and also oversamples the loop. If (original_loop_iterations /
stream_factor) has a remainder, the remainder loop body instances outside the loop
are not oversampled, and run at the original rate.

You can specify this pragma for loops at the top level of your MATLAB design.

This pragma does not affect MATLAB simulation behavior.

Note If you specify the coder.unroll pragma, this pragma takes precedence over
coder.hdl.loopspec. coder.hdl.loopspec has no effect.

Examples

Completely unroll MATLAB loop in generated HDL code

Unroll loop in generated code.

function y = hdltest
 pv = uint8(1);
 y = uint8(zeros(1,10));

 coder.hdl.loopspec('unroll');
 % Optional comment between pragma and loop statement
 for i = 1:10
 y(i) = pv + i;

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-34

 end
end

Partially unroll MATLAB loop in generated HDL code

Generate a loop statement in the HDL code that has two iterations and contains five
instances of the original loop body.

function y = hdltest
 pv = uint8(1);
 y = uint8(zeros(1,10));

 coder.hdl.loopspec('unroll', 5);
 % Optional comment between pragma and loop statement
 for i = 1:10
 y(i) = pv + i;
 end
end

Completely stream MATLAB loop in generated HDL code

In the generated code, implement the 10-iteration MATLAB loop as a single instance of
the original loop body that is oversampled by a factor of 10.

function y = hdltest
 pv = uint8(1);
 y = uint8(zeros(1,10));

 coder.hdl.loopspec('stream');
 % Optional comment between pragma and loop statement
 for i = 1:10
 y(i) = pv + i;
 end
end

Partially stream MATLAB loop in generated HDL code

In the generated code, implement the 10-iteration MATLAB loop as five instances of the
original loop body that are oversampled by a factor of 2.

 coder.hdl.loopspec

8-35

function y = hdltest
 pv = uint8(1);
 y = uint8(zeros(1,10));

 coder.hdl.loopspec('stream', 2);
 % Optional comment between pragma and loop statement
 for i = 1:10
 y(i) = pv + i;
 end
end

Input Arguments
stream_factor — Loop streaming factor
positive integer

Loop streaming factor, specified as a positive integer.

Setting stream_factor to the number of original loop iterations is equivalent to fully
streaming the loop, or using coder.hdl.loopspec('stream').
Example: 4

unroll_factor — Loop unrolling factor
positive integer

Number of loop body instances, specified as a positive integer.

Setting unroll_factor to the number of original loop iterations is equivalent to fully
unrolling the loop, or using coder.hdl.loopspec('unroll').
Example: 10

See Also

Topics
“Optimize MATLAB Loops”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-36

coder.hdl.pipeline
Insert pipeline registers at output of MATLAB expression

Syntax
out = coder.hdl.pipeline(expr)
out = coder.hdl.pipeline(expr,num)

Description
out = coder.hdl.pipeline(expr) inserts one pipeline register at the output of expr
in the generated HDL code. This pragma does not affect MATLAB simulation behavior.

Use this pragma to specify exactly where to insert pipeline registers. For example, in a
MATLAB assignment statement, you can specify the coder.hdl.pipeline pragma:

• On the entire right side of the assignment statement.
• On a subexpression.
• By nesting multiple pragmas.
• On a call to a subfunction, if the subfunction returns a single value. You cannot specify

the pragma for a subfunction that returns multiple values.

If you enable distributed pipelining, HDL Coder can move the pipeline registers to break
the critical path.

HDL Coder cannot insert a pipeline register at the output of a MATLAB expression if any
of the variables in the expression are:

• In a loop.
• A persistent variable that maps to a state element, like a state register or RAM.
• An output of a function. For example, in the following code, you cannot add a pipeline

register for an expression containing y:

 coder.hdl.pipeline

8-37

function [y] = myfun(x)
y = x + 5;
end

• In a data feedback loop. For example, in the following code, you cannot pipeline an
expression containing the t or pvar variables:

persistent pvar;
t = u + pvar;
pvar = t + v;

You cannot use coder.hdl.pipeline to insert a pipeline register for a single variable
or other no-op expression. To learn how to insert a pipeline register for a function input
variable, see “Port Registers”.

out = coder.hdl.pipeline(expr,num) inserts num pipeline registers at the output
of expr in the generated HDL code. This pragma does not affect MATLAB simulation
behavior.

Use this pragma to specify exactly where to insert pipeline registers. For example, in a
MATLAB assignment statement, you can specify the coder.hdl.pipeline pragma:

• On the entire right side of the assignment statement.
• On a subexpression.
• By nesting multiple pragmas.
• On a call to a subfunction, if the subfunction returns a single value. You cannot specify

the pragma for a subfunction that returns multiple values.

If you enable distributed pipelining, HDL Coder can move the pipeline registers to break
the critical path.

HDL Coder cannot insert a pipeline register at the output of a MATLAB expression if any
of the variables in the expression are:

• In a loop.
• A persistent variable that maps to a state element, like a state register or RAM.
• An output of a function. For example, in the following code, you cannot add a pipeline

register for an expression containing y:

function [y] = myfun(x)
y = x + 5;
end

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-38

• In a data feedback loop. For example, in the following code, you cannot pipeline an
expression containing the t or pvar variables:

persistent pvar;
t = u + pvar;
pvar = t + v;

You cannot use coder.hdl.pipeline to insert a pipeline register for a single variable
or other no-op expression. To learn how to insert a pipeline register for a function input
variable, see “Port Registers”.

Examples

Insert one pipeline register at output of MATLAB expression

At the output of a MATLAB expression, a + b * c, insert a single pipeline register.

y = coder.hdl.pipeline(a + b * c);

Insert multiple pipeline registers at output of MATLAB expression

At the output of a MATLAB expression, a + b * c, insert three pipeline registers.

 y = coder.hdl.pipeline(a + b * c, 3);

Insert pipeline registers at intermediate stage of MATLAB expression

For a MATLAB expression, a + b * c, after the computation of b * c, insert five
pipeline registers.

 y = a + coder.hdl.pipeline(b * c, 5);

 coder.hdl.pipeline

8-39

Insert pipeline registers at intermediate stage and at output of MATLAB
expression

At an intermediate stage and at the output of a MATLAB expression, use nested
coder.hdl.pipeline pragmas to insert pipeline registers.

For a MATLAB expression, a + b * c, after the computation of b * c, insert five
pipeline registers, and insert two pipeline registers at the output of the whole expression.

 y = coder.hdl.pipeline(a + coder.hdl.pipeline(b * c, 5),2);

Input Arguments
expr — MATLAB expression to pipeline
MATLAB expression

MATLAB expression to pipeline. At the output of this expression in the generated HDL
code, insert pipeline registers.
Example: a + b

num — Number of registers
MATLAB expression

Number of pipeline registers to insert at the output of expr in the generated HDL code,
specified as a positive integer.
Example: 3

See Also

Topics
“Pipeline MATLAB Expressions”
“Pipelining MATLAB Code”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-40

hdlcoder.Board class
Package: hdlcoder

Board registration object that describes SoC custom board

Description
board = hdlcoder.Board creates a board object that you use to register a custom
board for an SoC platform.

To specify the characteristics of your board, set the properties of the board object.

Construction
board = hdlcoder.Board creates an hdlcoder.Board object that you can use to
register a custom board for an SoC platform.

Properties
BoardName — Board name
'' (default) | character vector

Board name, specified as a character vector. In the HDL Workflow Advisor, this name
appears in the Target platform dropdown list.
Example: 'Enclustra Mars ZX3 with PM3 base board'

FPGAVendor — Vendor name
'' (default) | 'Altera' | 'Xilinx'

FPGA vendor name, specified as a character vector.
Example: 'Xilinx'

FPGAFamily — FPGA family name
'' (default) | character vector

 hdlcoder.Board class

8-41

FPGA family name, specified as a character vector.
Example: 'Zynq'

FPGADevice — FPGA device identifier
'' (default) | character vector

FPGA device identifier, specified as a character vector.
Example: 'xc7z020'

FPGAPackage — FPGA package identifier for Xilinx devices
'' (default) | character vector

FPGA package identifier for Xilinx devices, specified as a character vector.

For Altera devices, this property is ignored.
Example: 'clg484'

FPGASpeed — FPGA speed for Xilinx devices
'' (default) | character vector

FPGA speed for Xilinx devices, specified as a character vector.

For Altera devices, this property is ignored.
Example: '-1'

SupportedTool — Supported synthesis tool
'' (default) | cell array of character vectors

Synthesis tool or tools that support this board, specified as a cell array of character
vectors. In the HDL Workflow Advisor, the Synthesis tool dropdown list shows the values
in this cell array.
Example: {'Altera Quartus II'}
Example: {'Xilinx Vivado'}
Example: {'Xilinx Vivado','Xilinx ISE'}

JTAGChainPosition — Optional JTAG chain position number
2 (default) | positive integer

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-42

JTAG chain position number, specified as a positive integer. The JTAG chain position
number is used when programming the FPGA via JTAG.

This property is optional.
Example: 3

Methods
addExternalIOInterface Define external IO interface for board object
addExternalPortInterface Define external port interface for board object
validateBoard Check property values in board object

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

 hdlcoder.Board class

8-43

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addExternalIOInterface
Class: hdlcoder.Board
Package: hdlcoder

Define external IO interface for board object

Syntax
addExternalIOInterface('InterfaceID',interfacename,'InterfaceType',
interfacetype,'PortName',portname,'PortWidth',portwidth,'FPGAPin',
pins,'IOPadConstraint',constraints)

Description
addExternalIOInterface('InterfaceID',interfacename,'InterfaceType',
interfacetype,'PortName',portname,'PortWidth',portwidth,'FPGAPin',
pins,'IOPadConstraint',constraints) adds an external IO interface to an
hdlcoder.Board object. You can add multiple external IO interfaces to your board
object.

Use this method if your board has more than one external interface, or if you want to be
able to predefine FPGA pin names for mapping from the HDL Workflow Advisor.

Input Arguments
interfacename — Interface name
character vector

Interface name, specified as a character vector. In the HDL Workflow Advisor, this name
appears in the Target Platform Interfaces dropdown list.
Example: 'LEDs General Purpose'

interfacetype — Interface direction
'IN' | 'OUT'

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-44

Interface direction, specified as a character vector. In the HDL Workflow Advisor, when
you specify a target interface for each of your DUT ports, this external IO interface is
available only for ports with a matching direction.

For example, if you set interfacetype to 'OUT', this external IO interface is available
only for Outport DUT ports.
Example: 'OUT'

portname — Port name
character vector

Board top-level port name, specified as a character vector.
Example: 'GPLEDs'

portwidth — Port bit width
positive integer

Port bit width, specified as a positive integer.
Example: 4

pins — Pin names
cell array of character vectors

FPGA pin names, specified as a cell array of character vectors.
Example: {'H18','AA14','AA13','AB15'}

constraints — IO pad constraints
{} (default) | cell array of character vectors

IO pad constraints, specified as a cell array of character vectors.
Example: {'IOSTANDARD = LVCMOS25'}
Example: {'IOSTANDARD = LVCMOS25','SLEW = SLOW'}

Tips
• For details about the external IO interface ports, pins, and constraints for your board,

view the board documentation.

 addExternalIOInterface

8-45

See Also
hdlcoder.Board | hdlcoder.Board.addExternalPortInterface

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-46

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addExternalPortInterface
Class: hdlcoder.Board
Package: hdlcoder

Define external port interface for board object

Syntax
addExternalPortInterface('IOPadConstraint',constraints)

Description
addExternalPortInterface('IOPadConstraint',constraints) adds a generic
external port interface to an hdlcoder.Board object. You can add at most one external
port interface to your board object.

Use this method if you want the External Port option to be available in the HDL
Workflow Advisor Target Platform Interface dropdown list. If you use this method to
add an external port, in the HDL Workflow Advisor, you must manually specify pin names
in the Bit Range / Address / FPGA Pin field.

Input Arguments
constraints — IO pad constraints
{} (default) | cell array of character vectors

IO pad constraints, specified as a cell array of character vectors.
Example: {'IOSTANDARD = LVCMOS25'}
Example: {'IOSTANDARD = LVCMOS25','SLEW = SLOW'}

 addExternalPortInterface

8-47

Tips
• To get IO constraint names for your board, view the board documentation.

Alternatives
If you know the details of the external interface, and want to make them available as UI
dropdown list options in the HDL Workflow advisor, use the
hdlcoder.Board.addExternalIOInterface method instead. For example, using
hdlcoder.Board.addExternalIOInterface, you can predefine characteristics of the
interface such as the name, port bit width, signal direction, and valid pin names.

See Also
hdlcoder.Board | hdlcoder.Board.addExternalIOInterface

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-48

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

validateBoard
Class: hdlcoder.Board
Package: hdlcoder

Check property values in board object

Syntax
validateBoard

Description
validateBoard checks that the hdlcoder.Board object has nondefault values for all
required properties, and that property values have valid data types. This method does not
check the correctness of property values for the target board. If validation fails, the
software displays an error message.

See Also
hdlcoder.Board

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Board and Reference Design Registration System”

Introduced in R2015a

 validateBoard

8-49

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

hdlcoder.ReferenceDesign class
Package: hdlcoder

Reference design registration object that describes SoC reference design

Description
refdesign = hdlcoder.ReferenceDesign('SynthesisTool', toolname)
creates a reference design object that you use to register a custom reference design for
an SoC platform.

To specify the characteristics of your reference design, set the properties of the reference
design object.

Use a reference design tool version that is compatible with the supported tool version. If
you choose a different tool version, it is possible that HDL Coder is unable to create the
reference design project for IP core integration.

Construction
refdesign = hdlcoder.ReferenceDesign('SynthesisTool',toolname) creates
a reference design object that you use to register a custom reference design for an SoC
platform.

Input Arguments
toolname — Synthesis tool name
Xilinx Vivado (default) | Altera Quartus II | Xilinx ISE | Xilinx Vivado

Synthesis tool name, specified as a character vector.
Example: 'Altera Quartus II'

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-50

Properties
ReferenceDesignName — Reference design name
'' (default) | character vector

Reference design name, specified as a character vector. In the HDL Workflow Advisor, this
name appears in the Reference design dropdown list.
Example: 'Default system (Vivado 2015.4)'

BoardName — Board name
'' (default) | character vector

Board associated with this reference design, specified as a character vector.
Example: 'Enclustra Mars ZX3 with PM3 base board'

SupportedToolVersion — Supported tool version
{} (default) | cell array of character vectors

One or more tool versions that work with this reference design, specified as a cell array of
character vectors.
Example: {'2015.4'}
Example: {'13.7','14.0'}

CustomConstraints — Design constraint file (optional)
{} (default) | cell array of character vectors

One or more design constraint files, specified as a cell array of character vectors. This
property is optional.
Example: {'MarsZX3_PM3.xdc'}
Example: {'MyDesign.qsf'}

CustomFiles — Relative path to required file or folder (optional)
{} (default) | cell array of character vectors

One or more relative paths to files or folders that the reference design requires, specified
as a cell array of character vectors. This property is optional.

Examples of required files or folders:

 hdlcoder.ReferenceDesign class

8-51

• Existing IP core used in the reference design.

For example, if the IP core, my_ip_core, is in the reference design folder, set
CustomFiles to {'my_ip_core']

• PS7 definition XML file.

For example, to include a PS7 definition XML file, ps7_system_prj.xml, in a folder,
data, set CustomFiles to {fullfile('data', 'ps7_system_prj.xml')}

• Folder containing existing IP cores used in the reference design. HDL Coder only
supports a specific IP core folder name for each synthesis tool:

• For Altera Qsys, IP core files must be in a folder named ip. Set CustomFiles to
{'ip'}.

• For Xilinx Vivado, IP core files, or a zip file containing the IP core files, must be in a
folder named ipcore. Set CustomFiles to {'ipcore'}.

• For Xilinx EDK, IP core files must be in a folder named pcores. Set CustomFiles
to {'pcores'}.

Note To add IP modules to the reference design, it is recommended to create an IP
repository folder that contains these IP modules, and then use the addIPRepository on
page 8-75 method.

Example: {'my_ip_core'}
Example: {fullfile('data', 'ps7_system_prj.xml')}
Example: {'ip'}
Example: {'ipcore'}
Example: {'pcores'}

IPCacheZipFile — IP cache file to include in the project
'' (default) | 'ipcache.zip' | character vector

Specify the IP cache zip file to include in your project. When you run the IP Core
Generation workflow in the HDL Workflow Advisor, the code generator extracts this file
in the Create Project task. The Build FPGA Bitstream task reuses the IP cache, which
accelerates reference design synthesis.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-52

This property is optional.
Example: 'ipcache.zip'

 hdlcoder.ReferenceDesign class

8-53

Methods
addAXI4MasterInterface Add and define AXI4 Master interface
addAXI4SlaveInterface Add and define AXI4 slave interface
addInternalIOInterface Add and define internal IO interface between

generated IP core and existing IP cores
addClockInterface Add clock and reset interface
addCustomEDKDesign Specify Xilinx EDK MHS project file
addCustomQsysDesign Specify Altera Qsys project file
addCustomVivadoDesign Specify Xilinx Vivado exported block design Tcl file
addIPRepository Include IP modules from your IP repository folder

in your custom reference design
addParameter Add and define custom parameters for your

reference design
CallbackCustomProgrammingMethod

Function handle for custom callback function that
gets executed during Program Target Device task
in the Workflow Advisor

EmbeddedCoderSupportPackage Specify whether to use an Embedded Coder
support package

PostBuildBitstreamFcn Function handle for callback function that gets
executed after Build FPGA Bitstream task in the
HDL Workflow Advisor

PostCreateProjectFcn Function handle for callback function that gets
executed after Create Project task in the HDL
Workflow Advisor

PostSWInterfaceFcn Function handle for custom callback function that
gets executed after Generate Software Interface
Model task in the HDL Workflow Advisor

PostTargetInterfaceFcn Function handle for callback function that gets
executed after Set Target Interface task in the
HDL Workflow Advisor

PostTargetReferenceDesignFcn Function handle for callback function that gets
executed after Set Target Reference Design task in
the HDL Workflow Advisor

validateReferenceDesign Check property values in reference design object

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-54

See Also
hdlcoder.Board

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

 hdlcoder.ReferenceDesign class

8-55

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addAXI4MasterInterface
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Add and define AXI4 Master interface

Syntax
addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',Interface_Connection)
addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',
Interface_Connection,'TargetAddressSegments',
Target_Address_Segments)
addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',Interface_Connection, Name,Value)
addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',
Interface_Connection,'TargetAddressSegments',
Target_Address_Segments, Name,Value)

Description
addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',Interface_Connection) adds and
defines an AXI4 Master interface for an Intel Qsys reference design.

addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',
Interface_Connection,'TargetAddressSegments',
Target_Address_Segments) adds and defines an AXI4 Master interface for a Xilinx
Vivado reference design.

addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',Interface_Connection, Name,Value)

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-56

adds and defines an AXI4 Master interface for an Intel Qsys reference design, with
additional options specified by one or more Name,Value pair arguments.

addAXI4MasterInterface('InterfaceID',
Interface_ID,'InterfaceConnection',
Interface_Connection,'TargetAddressSegments',
Target_Address_Segments, Name,Value) adds and defines an AXI4 Master
interface for a Xilinx Vivado reference design, with additional options specified by one or
more Name,Value pair arguments.

Input Arguments
Interface_ID — AXI4 Master interface name
'AXI4 Master' (default) | character vector

Name of the AXI4 Master interface that you add to the reference design, specified as a
character vector. If you create multiple AXI4 Master interfaces, make sure that you use
unique names for each interface.
Example: 'AXI4 Master 1'

Interface_Connection — Reference design port name
'' (default) | character vector

Name of the reference design port that is connected to the AXI4 Master interface,
specified as a character vector.
Example: 'axi_interconnect_1/S01_AXI'

Target_Address_Segments — Reference design address segments
'' (default) | character vector

Target address segment of the Xilinx Vivado reference design, specified as a character
vector.
Example: '{{'mig_7series_0/memmap/
memaddr',hex2dec('40000000'),hex2dec('40000000')}}'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 addAXI4MasterInterface

8-57

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

ReadSupport — AXI4 Master read interface support
'true' (default) | 'false'

Specify whether you want the AXI4 Master interface to support a read channel as a
Boolean.
Example: 'ReadSupport','true' specifies support for an AXI4 Master read interface
connection.

WriteSupport — AXI4 Master write interface support
'true' (default) | 'false'

Specify whether you want the AXI4 Master interface to support a write channel as a
Boolean.
Example: 'WriteSupport','true' specifies support for an AXI4 Master write interface
connection.

MaxDataWidth — Maximum data width
128 (default) | Integer

Maximum width for the Data signal that is transferred across the AXI4 Master interface,
specified as an integer.
Example: 'MaxDataWidth',32 specifies maximum data width of 32 bits.

AddrWidth — Address width
32 (default) | Integer

Width of the AXI4 Master interface read and write addresses, specified as an integer.
Example: 'AddrWidth',32 specifies an address size of 32 bits.

DefaultReadBaseAddr — Starting read address
0 (default) | Integer

Default starting address of the AXI4 Master read interface, specified as an integer.
Example: 'DefaultReadBaseAddr',hex2dec('40000000') specifies
hex2dec('40000000') as the starting read address.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-58

DefaultWriteBaseAddr — Starting write address
0 (default) | Integer

Default starting address of the AXI4 Master write interface, specified as an integer.
Example: 'DefaultReadBaseAddr',hex2dec('41000000') specifies
hex2dec('41000000') as the starting write address.

See Also
hdlcoder.ReferenceDesign | hdlcoder.ReferenceDesign.addClockInterface

Topics
“Model Design for AXI4 Master Interface Generation”
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2017b

 addAXI4MasterInterface

8-59

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addAXI4SlaveInterface
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Add and define AXI4 slave interface

Syntax
addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr)
addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr,'MasterAddressSpace',
master_addr_space)
addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr,Name,Value)
addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr,'MasterAddressSpace',
master_addr_space,Name,Value)

Description
addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr) adds and defines an AXI4 interface
for an Altera reference design, or an AXI4 or AXI4-Lite interface for a Xilinx ISE reference
design.

addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr,'MasterAddressSpace',
master_addr_space) adds and defines an AXI4 or AXI4-Lite interface for Xilinx Vivado
reference designs.

addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr,Name,Value) adds and defines an
AXI4 interface for an Altera reference design, or an AXI4 or AXI4-Lite interface for a
Xilinx ISE reference design, with additional options specified by one or more
Name,Value pair arguments.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-60

addAXI4SlaveInterface('InterfaceConnection',
ref_design_port,'BaseAddress',base_addr,'MasterAddressSpace',
master_addr_space,Name,Value) adds and defines an AXI4 or AXI4-Lite interface for
Xilinx Vivado reference designs, with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
ref_design_port — Reference design port name
'' (default) | character vector

Reference design port that is connected to the AXI4 or AXI4-Lite interface, specified as a
character vector.
Example: 'axi_interconnect_0/M00_AXI'

base_addr — Base address
'' (default) | character vector

Base address for AXI4 or AXI4-Lite slave interface, specified as a character vector.
Example: '0x40010000'

master_addr_space — Master interface address space (Vivado only)
'' (default) | character vector

Address space of the master interface connected to this slave interface, specified as a
character vector. For Vivado reference designs only.
Example: 'processing_system7_0/Data'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

InterfaceType — Interface type
{'AXI4-Lite','AXI4'} (default) | 'AXI4' | 'AXI4-Lite'

 addAXI4SlaveInterface

8-61

Type of interface connection, specified as a character vector or a cell array of
character vectors.
Example: 'InterfaceType','AXI4-Lite' specifies an 'AXI4–Lite' interface type
connection.

InterfaceID — Interface name
{'AXI4-Lite','AXI4'} (default) | character vector

Name of the interface, specified as a character vector. When you provide the
InterfaceID, InterfaceType must be set to either 'AXI4' or 'AXI4–Lite'.
Example: 'InterfaceID','MyAXI4','InterfaceType','AXI4' specifies interface
name as 'MyAXI4' and interface type as 'AXI4'.

Tips
• Before running this method, you must run the

hdlcoder.ReferenceDesign.addClockInterface method.
• The addAXI4SlaveInterface method is optional. You can define your own custom

reference design without the AXI4 slave interface.

See Also
hdlcoder.ReferenceDesign | hdlcoder.ReferenceDesign.addClockInterface

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-62

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addInternalIOInterface
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Add and define internal IO interface between generated IP core and existing IP cores

Syntax
addInternalIOInterface('InterfaceID',interface_name,'InterfaceType',
interface_type,'PortName',port_name,'PortWidth',
port_width,'InterfaceConnection',interface_connection)

Description
addInternalIOInterface('InterfaceID',interface_name,'InterfaceType',
interface_type,'PortName',port_name,'PortWidth',
port_width,'InterfaceConnection',interface_connection) adds and defines
an internal IO interface between the generated IP core and other IP cores in the
reference design.

In the HDL Workflow Advisor, if you target a custom reference design that has an internal
IO interface, you must map a DUT port to the internal IO interface. In the Target Platform
Interface Table, you cannot leave the internal IO interface unassigned.

Input Arguments
interface_name — Custom internal IO interface name
'' (default) | character vector

Custom internal IO interface name, specified as a character vector. In the HDL Workflow
Advisor, when you select the custom reference design, this name appears as an option in
the Target Platform Interface Table.
Example: 'MyCustomInternalInterface'

 addInternalIOInterface

8-63

interface_type — Interface direction
'IN' (default) | 'OUT'

Interface direction relative to the generated IP core, specified as a character vector.

For example, if the interface is an input to the generated IP core, set interface_type to
'IN'.

port_name — Port name
'' (default) | character vector

Name of generated IP core port in the HDL code, specified as a character vector.
Example: 'MyIPCoreInternalIOInterfacePort'

port_width — Port bit width
8 (default) | integer

Bit width of generated IP core port, specified as an integer.

interface_connection — Internal IO interface connection
'' (default) | character vector

Internal IO interface port to connect with generated IP core port, specified as a character
vector. The internal IO interface port is an existing port in the reference design. Its port
bit width must match port_width.

Different synthesis tools have different formats for the internal IO interface port.

Synthesis Tool Format Example
Altera Quartus II 'internal_ip_0.In0'
Xilinx Vivado 'internal_ip_0/In0'
Xilinx ISE 'internal_In0'

Example: 'internal_ip_0.In0'
Example: 'internal_ip_0/In0'
Example: 'internal_In0'

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-64

See Also
hdlcoder.ReferenceDesign

Topics
“Define and Register Custom Board and Reference Design for Zynq Workflow”
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015b

 addInternalIOInterface

8-65

addClockInterface
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Add clock and reset interface

Syntax
addClockInterface('ClockConnection',clock_port,'ResetConnection',
reset_port)
addClockInterface('ClockConnection',clock_port,'ResetConnection',
reset_port,Name,Value)

Description
addClockInterface('ClockConnection',clock_port,'ResetConnection',
reset_port) adds a clock and reset interface to an hdlcoder.ReferenceDesign
object.

addClockInterface('ClockConnection',clock_port,'ResetConnection',
reset_port,Name,Value) adds a clock and reset interface to the
hdlcoder.ReferenceDesign object with additional options specified by one or more
Name,Value pair arguments. When you specify these arguments, in the HDL Workflow
Advisor, HDL Coder adds a Set Target Frequency task. To modify the output clock
frequency setting in the reference design clock wizard, in this task, specify the Target
Frequency (MHz).

Input Arguments
clock_port — Clock port name
'' (default) | character vector

Reference design port that is connected to the IP core clock port, specified as a character
vector.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-66

Example: 'processing_system7_1/FCLK_CLK0'

reset_port — Reset port name
'' (default) | character vector

Reference design port that is connected to the IP core reset port, specified as a character
vector.
Example: 'proc_sys_reset/peripheral_aresetn'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

DefaultFrequencyMHz — The default frequency in MHz
0 (default) | integer

The default clock frequency in MHz of the clock module IP in the reference design,
specified as an integer. When you open the HDL Workflow Advisor, HDL Coder populates
this information for Default (MHz) in the Set Target Frequency task.
Example: 'DefaultFrequencyMHz', 50 specifies the default frequency as 50 MHz.

MinFrequencyMHz — The minimum frequency in MHz
0 (default) | integer

The minimum clock frequency in MHz of the clock module IP in the reference design,
specified as an integer.
Example: 'MinFrequencyMHz', 5 specifies the minimum clock frequency as 5 MHz.

MaxFrequencyMHz — The maximum frequency in MHz
0 (default) | integer

The maximum clock frequency in MHz of the clock module IP in the reference design,
specified as an integer. In the HDL Workflow Advisor, HDL Coder sets the Frequency
Range (MHz) in the Set Target Frequency task based on the MinFrequencyMHz and
MaxFrequencyMHz values that you specify.

 addClockInterface

8-67

Example: 'MaxFrequencyMHz', 500 specifies the maximum clock frequency as 500
MHz.

ClockNumber — Clock output port number
1 (default) | integer

Port number of the clock output from the clock module IP in the reference design,
specified as an integer.
Example: 'ClockNumber', 2 specifies to use the second output port in the clock
module IP as the clock port.

ClockModuleInstance — Clock module name
'clk_wiz_0' (default) | character vector

The name of the clock module IP in the reference design, specified as a character vector.
Example: 'ClockModuleInstance', 'clk_wiz_1' specifies clk_wiz_1 as the name
of the clock module IP.

See Also
hdlcoder.ReferenceDesign |
hdlcoder.ReferenceDesign.addAXI4SlaveInterface

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-68

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addCustomEDKDesign
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Specify Xilinx EDK MHS project file

Syntax
addCustomEDKDesign('CustomEDKMHS',mhs_project_file)

Description
addCustomEDKDesign('CustomEDKMHS',mhs_project_file) specifies the MHS
project file that contains the Xilinx EDK embedded system design. Use this method if your
synthesis tool is Xilinx ISE.

Input Arguments
mhs_project_file — MHS project file
character vector

MHS project file for Xilinx EDK embedded system design, specified as a character vector.
Example: 'system.mhs'

Tips
• If your synthesis tool is Xilinx Vivado, use the addCustomVivadoDesign method.
• If your synthesis tool is Altera Quartus II, use the addCustomQsysDesign method.

 addCustomEDKDesign

8-69

See Also
hdlcoder.ReferenceDesign |
hdlcoder.ReferenceDesign.addCustomQsysDesign |
hdlcoder.ReferenceDesign.addCustomVivadoDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-70

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addCustomQsysDesign
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Specify Altera Qsys project file

Syntax

addCustomQsysDesign('CustomQsysPrjFile',qsys_project_file)

Description

addCustomQsysDesign('CustomQsysPrjFile',qsys_project_file) specifies the
Qsys project file that contains the Altera Qsys embedded system design. Use this method
if your synthesis tool is Altera Quartus II.

Input Arguments
qsys_project_file — Qsys project file
character vector

Qsys project file for Altera Qsys embedded system design, specified as a character vector.
Example: 'system_soc.qsys'

Tips
• If your synthesis tool is Xilinx Vivado, use the addCustomVivadoDesign method.
• If your synthesis tool is Xilinx ISE, use the addCustomEDKDesign method.

 addCustomQsysDesign

8-71

See Also
hdlcoder.ReferenceDesign | hdlcoder.ReferenceDesign.addCustomEDKDesign
| hdlcoder.ReferenceDesign.addCustomVivadoDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-72

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addCustomVivadoDesign
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Specify Xilinx Vivado exported block design Tcl file

Syntax
addCustomVivadoDesign('CustomBlockDesignTcl',bd_tcl_file)

Description
addCustomVivadoDesign('CustomBlockDesignTcl',bd_tcl_file) specifies the
exported block design Tcl file that contains the Xilinx Vivado embedded system design.
Use this method if your synthesis tool is Xilinx Vivado.

Input Arguments
bd_tcl_file — Block design Tcl file
character vector

Block design Tcl file that you exported from your Xilinx Vivado embedded system design
project, specified as a character vector. The Tcl file name must be the same as the Vivado
block diagram name.
Example: 'system_top.tcl'

Tips
• If your synthesis tool is Xilinx ISE, use the

hdlcoder.ReferenceDesign.addCustomEDKDesign method.
• If your synthesis tool is Altera Quartus II, use the

hdlcoder.ReferenceDesign.addCustomQsysDesign method.

 addCustomVivadoDesign

8-73

See Also
hdlcoder.ReferenceDesign | hdlcoder.ReferenceDesign.addCustomEDKDesign
| hdlcoder.ReferenceDesign.addCustomQsysDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-74

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addIPRepository
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Include IP modules from your IP repository folder in your custom reference design

Syntax
addIPRepository('IPListFunction',IP_list_function)
addIPRepository('IPListFunction',IP_list_function,Name,Value)

Description
addIPRepository('IPListFunction',IP_list_function) adds IP modules that
are in the IP repository folder to your reference design project.

addIPRepository('IPListFunction',IP_list_function,Name,Value) adds IP
modules that are in the IP repository folder to your reference design project with
additional options specified by one or more Name,Value pair arguments.

Before you use this method, define the IP list function that points to the IP modules in the
repository folder. To learn more, see “Define and Add IP Repository to Custom Reference
Design”.

Input Arguments
IP_list_function — Name and path to the function that points to the IP
repository
'' (default) | character vector

Name and path to the function that points to IP modules in the IP repository folder to add
to the reference design project, specified as a character vector.
Example: 'adi.hdmi.vivado.hdlcoder_video_iplist'
Example: 'mathworks.hdlcoder.vivado.hdlcoder_video_iplist'

 addIPRepository

8-75

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NotExistMessage — Error message to display if IP function is not found
'' (default) | character vector

Error message that you create to be displayed if IP list function is not found on the
MATLAB path, specified as a character vector.
Example: 'IP repository cannot be found'

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Define and Add IP Repository to Custom Reference Design”
“Board and Reference Design Registration System”
“Register a Custom Board”
“Register a Custom Reference Design”

Introduced in R2017a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-76

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

addParameter
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Add and define custom parameters for your reference design

Syntax
addParameter('ParameterID',parameter_name,'DisplayName',
display_name,'DefaultValue',default_value)
addParameter('ParameterID',parameter_name,'DisplayName',
display_name,'DefaultValue',default_value,Name,Value)

Description
addParameter('ParameterID',parameter_name,'DisplayName',
display_name,'DefaultValue',default_value) adds and defines a custom
parameter for your reference design with a text box that displays the default value of the
parameter.

addParameter('ParameterID',parameter_name,'DisplayName',
display_name,'DefaultValue',default_value,Name,Value) adds and defines a
custom parameter for your reference design with additional options specified by one or
more Name,Value pair arguments.

The custom parameters are optional. In the HDL Workflow Advisor Set Target
Reference Design task, HDL Coder populates the Reference design parameters section
with the custom parameters and the options that you specify.

Input Arguments
parameter_name — Custom parameter name
'' (default) | character vector

Custom parameter name, specified as a character vector.

 addParameter

8-77

Example: 'DUTPath'
Example: 'ChannelMapping'

display_name — Custom parameter display name
'' (default) | character vector

Name that you want to display for the custom parameter in the HDL Workflow Advisor,
specified as a character vector. This name appears in the Reference design parameters
section in the Set Target Reference Design task.
Example: 'DUT Path'
Example: 'Channel Mapping'

default_value — Custom parameter default value
'' (default) | character vector

Default value to set for the custom parameter, specified as a character vector. In the Set
Target Reference Design task in the HDL Workflow Advisor, HDL Coder displays the
default value of the custom parameter inside a text box.
Example: '1'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ParameterType — Parameter widget
hdlcoder.ParameterType.Edit (default) | hdlcoder.ParameterType.DropDown |
hdlcoder.ParameterType.Edit

Specify the widget type to use for the parameter values. By default, theParameterType
is a text box. If you specify the drop-down list for ParameterType, use the Choice
property to list the parameter values as a cell array of character vectors.
Example: 'ParameterType',hdlcoder.ParameterType.Dropdown specifies a drop-
down list with the values that the parameter can take.

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-78

Choice — Choice of parameter values
'' (default) | cell array of character vectors

The list of choices that you can specify for the custom parameter, specified as a cell array
of character vectors. To specify this list, set ParameterType to
hdlcoder.ParameterType.Dropdown.
Example: 'ParameterType',hdlcoder.ParameterType.Dropdown,'Choice',
{'Rx', 'Tx'} specifies a drop-down list with Rx and Tx as the drop-down values.

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2016b

 addParameter

8-79

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

CallbackCustomProgrammingMethod
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Function handle for custom callback function that gets executed during Program Target
Device task in the Workflow Advisor

Syntax
CallbackCustomProgrammingMethod

Description
CallbackCustomProgrammingMethod registers a function handle for the callback
function that gets executed when running the Program Target Device task in the HDL
Workflow Advisor. If hRD is the reference design object that you construct with the
hdlcoder.ReferenceDesign class, then use this syntax to register the function handle:

hRD.CallbackCustomProgrammingMethod = @my_reference_design.callback_CustomProgrammingMethod;

To define your callback function, create a file that defines a MATLAB function and add it
to your MATLAB path. You can use any name for the callback function. In this example,
the function name is callback_PostBuildBitstream, located in the reference design
package folder, +my_reference_design.

With this callback function, you can specify a custom programming method to program
the target device. This example code shows how to create the callback function.

function [status, log] = callback_CustomProgrammingMethod(infoStruct)
% Reference design callback function for custom programming method
%
% infoStruct: information in structure format
% infoStruct.ReferenceDesignObject: current reference design registration object
% infoStruct.BoardObject: current board registration object
% infoStruct.ParameterStruct: custom parameters of the current reference design, in struct format
% infoStruct.HDLModelDutPath: the block path to the HDL DUT subsystem
% infoStruct.BitstreamPath: the path to the generated FPGA bitstream file

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-80

% infoStruct.ToolProjectFolder: the path to synthesis tool project folder
% infoStruct.ToolProjectName: the synthesis tool project name
% infoStruct.ToolCommandString: the command for running a tcl file
%
% status: process run status
% status == true means process run successfully
% status == false means process run failed
% log: output log string
status = true;
log = sprintf('Run custom programming method callback...\n');

% Enter your commands for custom programming here
% ...
% ...

end

In the HDL Workflow Advisor, HDL Coder selects the custom programming method to
program the target SoC device. If you do not specify the custom programming method,
HDL Coder provides JTAG and Download as the options to program the target device.

When you create the callback function, pass the infoStruct argument to the function.
The argument contains the reference design and board information in a structure
format. Use this information to specify custom settings for the build process and
bitstream generation.

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2016a

 CallbackCustomProgrammingMethod

8-81

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

EmbeddedCoderSupportPackage
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Specify whether to use an Embedded Coder support package

Syntax
EmbeddedCoderSupportPackage

Description
EmbeddedCoderSupportPackage specifies if you want to use an Embedded Coder®

support package for your reference design. Use this parameter if you are targeting a
standalone FPGA board or an SoC device such as the Xilinx Zynq®-7000 platform.

If you are targeting a standalone FPGA board, the reference designs do not require an
Embedded Coder support package. If hRD is the reference design object that you
construct with the hdlcoder.ReferenceDesign class, then use this syntax:

hRD.EmbeddedCoderSupportPackage = hdlcoder.EmbeddedCoderSupportPackage.None;

When you are not using the support package, HDL Coder does not have the Generate
Software Interface Model task in the HDL Workflow Advisor.

If you are targeting SoC devices, use this syntax depending on whether you are using an
Altera SoC or a Xilinx Zynq platform.

hRD.EmbeddedCoderSupportPackage = hdlcoder.EmbeddedCoderSupportPackage.Zynq;
hRD.EmbeddedCoderSupportPackage = hdlcoder.EmbeddedCoderSupportPackage.AlteraSoC;

See Also
hdlcoder.ReferenceDesign

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-82

Topics
“IP Core Generation Workflow without an Embedded ARM Processor: Xilinx Kintex-7
KC705”
“IP Core Generation Workflow for Standalone FPGA Devices”
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2016b

 EmbeddedCoderSupportPackage

8-83

PostBuildBitstreamFcn
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Function handle for callback function that gets executed after Build FPGA Bitstream task
in the HDL Workflow Advisor

Syntax
PostBuildBitstreamFcn

Description
PostBuildBitstreamFcn registers a function handle for the callback function that gets
called at the end of the Build FPGA Bitstream task in the HDL Workflow Advisor. If hRD
is the reference design object that you construct with the hdlcoder.ReferenceDesign
class, then use this syntax to register the function handle:

hRD.PostBuildBitstreamFcn = @my_reference_design.callback_PostBuildBitstream;

To define your callback function, create a file that defines a MATLAB function and add it
to your MATLAB path. You can use any name for the callback function. In this example,
the function name is callback_PostBuildBitstream, located in the reference design
package folder +my_reference_design.

With this callback function, you can specify custom settings when HDL Coder runs the
build process and generates the bitstream. This example code shows how to create the
callback function. The function displays the status after running the task, and the board
and reference design information.

function [status, log] = callback_PostBuildBitstream(infoStruct)
% Reference design callback run at the end of the task Build FPGA Bitstream
%
% infoStruct: information in structure format
% infoStruct.ReferenceDesignObject: current reference design registration object
% infoStruct.BoardObject: current board registration object
% infoStruct.ParameterStruct: custom parameters of the current reference design, in struct format

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-84

% infoStruct.HDLModelDutPath: the block path to the HDL DUT subsystem
% infoStruct.BitstreamPath: the path to generated FPGA bitstream file
%
% status: process run status
% status == true means process run successfully
% status == false means process run failed
% log: output log string

status = false;
log = sprintf('Run post build bitstream callback\n%s\n%s\n', infoStruct.HDLModelDutPath, infoStruct.BitstreamPath);

% Exporting the InfoStruct Contents
% ...
% ...

end

When you create the callback function, pass the infoStruct argument to the function.
The argument contains the reference design and board information in a structure
format. Use this information to specify custom settings for the build process and
bitstream generation.

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2016b

 PostBuildBitstreamFcn

8-85

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

PostCreateProjectFcn
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Function handle for callback function that gets executed after Create Project task in the
HDL Workflow Advisor

Syntax
PostCreateProjectFcn

Description
PostCreateProjectFcn registers a function handle for the callback function that gets
called at the end of the Create Project task in the HDL Workflow Advisor. If hRD is the
reference design object that you construct with the hdlcoder.ReferenceDesign class,
then use this syntax to register the function handle.

hRD.PostCreateProjectFcn = @my_reference_design.callback_PostCreateProject;

To define your callback function, create a file that defines a MATLAB function and add it
to your MATLAB path. You can use any name for the callback function. In this example,
the function name is callback_PostCreateProject, and is located in the reference
design package folder +my_reference_design.

With this callback function, you can specify custom settings for reference design project
creation. This example code shows how to create the callback function. The function
exports the contents of the board and reference design object to a
PostCreateProjectInfo.txt file, and validates that the project creation task ran
successfully.

function [status, log] = callback_PostCreateProject(infoStruct)
% Reference design callback run at the end of the task Create Project
%
% infoStruct: information in structure format
% infoStruct.ReferenceDesignObject: current reference design registration object
% infoStruct.BoardObject: current board registration object

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-86

% infoStruct.ParameterStruct: custom parameters of the current reference design, in struct format
% infoStruct.HDLModelDutPath: the block path to the HDL DUT subsystem
% infoStruct.ToolProjectFolder: the path to synthesis tool project folder
% infoStruct.ToolProjectName: the synthesis tool project name
%
% status: process run status
% status == true means process run successfully
% status == false means process run failed
% log: output log string

status = false;
log = sprintf('Run post create project callback\n%s', evalc('infoStruct'));

% Exporting the InfoStruct Contents
% ...
% ...

end

In the HDL Workflow Advisor, when HDL Coder runs the Create Project task, it executes
the callback function at the end of the task.

When you create the callback function, pass the infoStruct argument to the function.
The argument contains the reference design and board information in a structure
format. Use this information to specify custom settings for the reference design project
creation.

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2016b

 PostCreateProjectFcn

8-87

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

PostSWInterfaceFcn
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Function handle for custom callback function that gets executed after Generate Software
Interface Model task in the HDL Workflow Advisor

Syntax
PostSWInterfaceFcn

Description
PostSWInterfaceFcn registers a function handle for the callback function that gets
executed at the end of the Generate Software Interface Model task in the HDL
Workflow Advisor. If hRD is the reference design object that you construct with the
hdlcoder.ReferenceDesign class, use this syntax to register the function handle.

hRD.PostSWInterfaceFcn = @my_reference_design.callback_PostSWInterface;

To define your callback function, create a file that defines a MATLAB function and add it
to your MATLAB path. You can use any name for the callback function. In this example,
the function name is callback_PostSWInterface, and is located in the reference
design package folder +my_reference_design.

With this callback function, you can change the generated software interface model for
the custom reference design.

This example code shows how to create the callback function. The function adds a
DocBlock in the software interface model.

function [status, log] = callback_PostSWInterface(infoStruct)
% Reference design callback run at the end of the task
% Generate Software Interface Model
%
% infoStruct: information in structure format
% infoStruct.ReferenceDesignObject: current reference design registration object

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-88

% infoStruct.BoardObject: current board registration object
% infoStruct.ParameterStruct: custom parameters of the current reference design, in struct format
% infoStruct.HDLModelDutPath: the block path to the HDL DUT subsystem
% infoStruct.SWModelDutPath: the block path to the SW interface subsystem
%
% feature controlled by IPCoreSoftwareInterfaceLibrary
% infoStruct.SWLibBlockPath: the block path to the SW interface library block
% infoStruct.SWLibFolderPath: the folder path to the SW interface library
%
% status: process run status
% status == true means process run successfully
% status == false means process run failed
% log: output log string

status = true;
log = '';
swDutPath = infoStruct.SWModelDutPath;
add_block(['simulink/Model-Wide', char(10), 'Utilities/DocBlock'], sprintf('%s/DocBlock', swDutPath), 'Position', [50, 50, 80, 80]);

end

In the HDL Workflow Advisor, when HDL Coder runs the Generate Software Interface
Model task, it executes the callback function at the end of the task.

When you create the callback function, pass the infoStruct argument to the function.
The argument contains the reference design and board information in a structure
format. Use this information to specify custom settings for software interface model
generation.

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

 PostSWInterfaceFcn

8-89

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

Introduced in R2016b

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-90

PostTargetInterfaceFcn
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Function handle for callback function that gets executed after Set Target Interface task in
the HDL Workflow Advisor

Syntax
PostTargetInterfaceFcn

Description
PostTargetInterfaceFcn registers a function handle for the callback function that
gets called at the end of the Set Target Interface task in the HDL Workflow Advisor. If
hRD is the reference design object that you construct with the
hdlcoder.ReferenceDesign class, then use this syntax to register the function handle.

hRD.PostTargetInterfaceFcn = @my_reference_design.callback_PostTargetInterface;

To define your callback function, create a file that defines a MATLAB function and add it
to your MATLAB path. You can use any name for the callback function. In this example,
the function name is callback_PostTargetInterface, and is located in the reference
design package folder +my_reference_design.

With this callback function, you can enable custom validations. This example code shows
how to create the callback function. If the custom parameter DUTPath is set to Rx, the
function validates that the reference design does not support the LEDs General
Purpose [0:7] interface.

function callback_PostTargetInterface(infoStruct)
% Reference design callback run at the end of the task Set Target Interface
%
% infoStruct: information in structure format
% infoStruct.ReferenceDesignObject: current reference design registration object
% infoStruct.BoardObject: current board registration object
% infoStruct.ParameterStruct: custom parameters of the current reference design, in struct format

 PostTargetInterfaceFcn

8-91

% infoStruct.HDLModelDutPath: the block path to the HDL DUT subsystem
% infoStruct.ProcessorFPGASynchronization: Processor/FPGA synchronization mode
% infoStruct.InterfaceStructCell: target interface table information
% a cell array of structure, for example:
% infoStruct.InterfaceStructCell{1}.PortName
% infoStruct.InterfaceStructCell{1}.PortType
% infoStruct.InterfaceStructCell{1}.DataType
% infoStruct.InterfaceStructCell{1}.IOInterface
% infoStruct.InterfaceStructCell{1}.IOInterfaceMapping

hRD = infoStruct.ReferenceDesignObject;
refDesignName = hRD.ReferenceDesignName;

% validate that when specific parameter is set to specific value, reference
% design does not support specific interface
paramStruct = infoStruct.ParameterStruct;
interfaceStructCell = infoStruct.InterfaceStructCell;
for ii = 1:length(interfaceStructCell)
 interfaceStruct = interfaceStructCell{ii};
 if strcmp(paramStruct.DutPath, 'Rx') && ...
 strcmp(interfaceStruct.IOInterface, 'LEDs General Purpose [0:7]')
 error('LEDs General Purpose [0:7] must not be used when the DUT path is Rx');
 end
end
end

In the HDL Workflow Advisor, when HDL Coder runs the Set Target Interface task, it
executes the callback function at the end of the task. If you specify Rx as the DUT Path
and use the LEDs General Purpose [0:7] interface for your DUT port, the coder
generates an error.

When you create the callback function, pass the infoStruct argument to the function.
The argument contains the reference design and board information in a structure
format. Use this information to enable custom validations on the DUT in your Simulink
model.

See Also
hdlcoder.ReferenceDesign

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-92

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2016b

 PostTargetInterfaceFcn

8-93

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

PostTargetReferenceDesignFcn
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Function handle for callback function that gets executed after Set Target Reference
Design task in the HDL Workflow Advisor

Syntax
PostTargetReferenceDesignFcn

Description
PostTargetReferenceDesignFcn registers a function handle for the callback function
that gets called at the end of the Set Target Reference Design task in the HDL
Workflow Advisor. If hRD is the reference design object that you construct with the
hdlcoder.ReferenceDesign class, use this syntax to register the function handle:

hRD.PostTargetReferenceDesignFcn = @my_reference_design.callback_PostTargetReferenceDesign

To define your callback function, create a file that defines a MATLAB function and add it
to your MATLAB path. You can use any name for the callback function. In this example,
the function name is callback_PostTargetReferenceDesign, and is located in the
reference design package folder +my_reference_design.

With the callback function, you can enable custom validations for your design. This
example code shows how to create the callback function and validate that the reset type
is synchronous.

function callback_PostTargetReferenceDesign(infoStruct)
% Reference design callback run at the end of the task Set Target Reference Design
%
% infoStruct: information in structure format
% infoStruct.ReferenceDesignObject: current reference design registration object
% infoStruct.BoardObject: current board registration object
% infoStruct.ParameterStruct: custom parameters of the current reference design, in struct format
% infoStruct.HDLModelDutPath: the block path to the HDL DUT subsystem

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-94

mdlName = bdroot(infoStruct.HDLModelDutPath);
hRD = infoStruct.ReferenceDesignObject;
refDesignName = hRD.ReferenceDesignName;

isResetSync = strcmpi(hdlget_param(mdlName, 'ResetType'), 'Synchronous');

% Reset must be synchronous
if ~isResetSync
 error('Invalid Reset type. Reset type must be synchronous');
end
end

In the HDL Workflow Advisor, when HDL Coder runs the Set Target Reference Design
task, it executes the callback function. If the reset type is not synchronous, the coder
generates an error.

When you create the callback function, pass the infoStruct argument to the function.
The argument contains the reference design and board information in a structure
format. Use this information to enable custom validations on the DUT in your Simulink
model.

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Define Custom Parameters and Callback Functions for Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2016b

 PostTargetReferenceDesignFcn

8-95

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

validateReferenceDesign
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Check property values in reference design object

Syntax
validateReferenceDesign

Description
validateReferenceDesign checks that the hdlcoder.ReferenceDesign object has
nondefault values for all required properties, and that property values have valid data
types. This method does not check the correctness of property values for the target
board. If validation fails, the software displays an error message.

See Also
hdlcoder.ReferenceDesign

Topics
Define and Register Custom Board and Reference Design for SoC Workflow
“Register a Custom Board”
“Register a Custom Reference Design”
“Board and Reference Design Registration System”

Introduced in R2015a

8 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

8-96

matlab:showdemo('hdlcoder_custom_board_ref_design_api')

